7. Eckart-Young: The Closest Rank k Matrix to A

Описание к видео 7. Eckart-Young: The Closest Rank k Matrix to A

MIT 18.065 Matrix Methods in Data Analysis, Signal Processing, and Machine Learning, Spring 2018
Instructor: Gilbert Strang
View the complete course: https://ocw.mit.edu/18-065S18
YouTube Playlist:    • MIT 18.065 Matrix Methods in Data Ana...  

In this lecture, Professor Strang reviews Principal Component Analysis (PCA), which is a major tool in understanding a matrix of data. In particular, he focuses on the Eckart-Young low rank approximation theorem.

License: Creative Commons BY-NC-SA
More information at https://ocw.mit.edu/terms
More courses at https://ocw.mit.edu

Комментарии

Информация по комментариям в разработке