Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Simplifying PyTorch Tensor Broadcasting: Efficient Row-wise Multiplication and Summation

  • vlogize
  • 2025-03-31
  • 2
Simplifying PyTorch Tensor Broadcasting: Efficient Row-wise Multiplication and Summation
PyTorch Tensor broadcastingpythonpytorchtensorbroadcast
  • ok logo

Скачать Simplifying PyTorch Tensor Broadcasting: Efficient Row-wise Multiplication and Summation бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Simplifying PyTorch Tensor Broadcasting: Efficient Row-wise Multiplication and Summation или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Simplifying PyTorch Tensor Broadcasting: Efficient Row-wise Multiplication and Summation бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Simplifying PyTorch Tensor Broadcasting: Efficient Row-wise Multiplication and Summation

Discover how to effectively perform `PyTorch Tensor broadcasting` for multiplying and summing rows across tensors, transforming complex operations into simple matrix multiplications.
---
This video is based on the question https://stackoverflow.com/q/70055111/ asked by the user 'sagi' ( https://stackoverflow.com/u/5353753/ ) and on the answer https://stackoverflow.com/a/70055291/ provided by the user 'GoodDeeds' ( https://stackoverflow.com/u/5987698/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: PyTorch Tensor broadcasting

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding PyTorch Tensor Broadcasting

When working with PyTorch, a popular machine learning library, you may encounter a problem involving tensor shapes and operations. One common issue relates to performing operations across tensors of different dimensions, particularly when you want to multiply and sum rows in a specific way.

In this guide, we will address a specific scenario where you have two tensors with shapes (n1, N) and (n2, N). The challenge is to multiply each row of the first tensor by each row of the second tensor and sum the results, yielding a final tensor of shape (n1, n2).

Let’s explore how to effectively achieve this using tensor broadcasting in PyTorch.

The Problem

You have two tensors:

Tensor 1 (x1): Shape (n1, N)

Tensor 2 (x2): Shape (n2, N)

You want to perform the following operations:

Multiply every row of x1 with every row of x2.

Sum the resulting multiplication results.

The expected output shape should be (n1, n2).

An initial attempt at this might look like:

[[See Video to Reveal this Text or Code Snippet]]

Unfortunately, this doesn't achieve the desired outcome, leading us to explore a more straightforward approach.

The Solution: Using Matrix Multiplication

The key to solving this problem lies in recognizing that the desired operations can be effectively transformed into a matrix multiplication. In PyTorch, you can utilize the torch.matmul() function to simplify this process immensely.

Steps to Implement the Solution

Understanding Matrix Multiplication:

To multiply each row of x1 with the rows of x2, you can take advantage of the transpose property. The result will inherently generate an output tensor in the shape you want.

Using torch.matmul():

You can directly perform the multiplication by transposing the second tensor. The code needed is succinct:

[[See Video to Reveal this Text or Code Snippet]]

Explanation of the Code

x2.T transposes the second tensor, changing its shape from (n2, N) to (N, n2).

The torch.matmul(x1, x2.T) function then calculates the matrix multiplication, which effectively achieves the element-wise multiplication and summation across the rows, resulting in a tensor with shape (n1, n2).

Summary

In conclusion, when faced with the challenge of broadcasting operations across tensors of differing dimensions, always check if a matrix multiplication can solve your problem efficiently. By recognizing that the operation can be transformed into a simple torch.matmul() call, you can streamline your code, enhance performance, and reduce the likelihood of errors arising from shape mismatches.

Now you should be set to implement tensor broadcasting effectively in PyTorch with confidence!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]