Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Upload a 10 GB CSV File to AWS Aurora Postgres Serverless

  • vlogize
  • 2025-05-25
  • 16
How to Upload a 10 GB CSV File to AWS Aurora Postgres Serverless
uploading large file to AWS aurora postgres serverlesspostgresqlamazon web servicesamazon rdspgadmin 4aws aurora serverless
  • ok logo

Скачать How to Upload a 10 GB CSV File to AWS Aurora Postgres Serverless бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Upload a 10 GB CSV File to AWS Aurora Postgres Serverless или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Upload a 10 GB CSV File to AWS Aurora Postgres Serverless бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Upload a 10 GB CSV File to AWS Aurora Postgres Serverless

A detailed guide on how to upload a large CSV file to AWS Aurora Postgres Serverless using various methods. Learn how to leverage tools like AWS Glue and the `\copy` command for seamless data transfer.
---
This video is based on the question https://stackoverflow.com/q/68320381/ asked by the user 'aadi sharma' ( https://stackoverflow.com/u/12673242/ ) and on the answer https://stackoverflow.com/a/68321612/ provided by the user 'gusto2' ( https://stackoverflow.com/u/1645712/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: uploading large file to AWS aurora postgres serverless

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Upload a 10 GB CSV File to AWS Aurora Postgres Serverless

Uploading large files to a database can often be a daunting task, especially when dealing with a 10 GB CSV file and serverless database environments. If you've found yourself struggling to upload sizable data files to an AWS Aurora Postgres serverless instance using PGAdmin, you're not alone. Several users encounter issues when trying to handle files this large through the standard user interface or even through the \copy command. This guide aims to provide you with effective solutions to this problem. Let's dive in!

The Challenge of Uploading Large Files

When working with large files in PostgreSQL, particularly in cloud environments like AWS Aurora serverless, there are several limitations that can hinder your progress. This could be attributed to:

Timeouts: Large uploads may exceed time limits, causing the process to fail.

Memory Limits: The database may struggle with processing massive files in one go.

Network Issues: Uploading large files can lead to disconnections or data integrity problems.

With these challenges in mind, let's explore some effective ways to upload your large CSV file to AWS Aurora Postgres.

Solutions for Uploading Large CSV Files

1. Using the \copy Command Effectively

The \copy command in PostgreSQL is a powerful tool that can help you load data from a CSV file into a table. To use \copy:

Open your PGAdmin or any PostgreSQL command-line tool.

Connect to your database.

Execute the \copy command as follows:

[[See Video to Reveal this Text or Code Snippet]]

Monitor your process: If you experience timeouts, consider adjusting your database settings or breaking up the CSV into smaller chunks.

2. Leveraging AWS Glue for ETL Processes

If the \copy command is not feasible due to size limitations or performance issues, consider using AWS Glue, an ETL (Extract, Transform, Load) service.

Steps to Use AWS Glue:

Upload your CSV file to Amazon S3:

Use the AWS Management Console, AWS CLI, or your preferred method.

Create an AWS Glue Crawler:

This crawler will infer the schema of your CSV data and create a metadata table in the AWS Glue Data Catalog.

Set Up an ETL Job:

Create an ETL job in AWS Glue to read from S3 and write to your Aurora PostgreSQL instance.

This method allows you to easily move large datasets without the constraints of the direct upload process.

Run the ETL Job:

Execute the job and monitor its progress through the AWS Glue console.

3. Considerations for Large File Uploads

Chunking Data: If feasible, consider breaking your large CSV file into smaller chunks. This method can alleviate memory issues and improve upload success rates.

Network Stability: Ensure you have a reliable network connection during the upload process to minimize timeout failures.

Monitor Performance: Keep an eye on performance metrics in your AWS environment to ensure everything is running smoothly.

Conclusion

Uploading a large 10 GB CSV file to AWS Aurora Postgres serverless may seem challenging, but with the right approach, it can be done effectively. By using either the \copy command or leveraging AWS Glue, you can ensure your data is transferred seamlessly. Remember to consider breaking your files into smaller sizes and ensure your network connection is stable for the best results. With these strategies, you're now equipped to handle large data uploads confidently!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]