Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Restructuring DataFrames in R: Using pivot_wider for Data Transformation

  • vlogize
  • 2025-08-15
  • 0
Restructuring DataFrames in R: Using pivot_wider for Data Transformation
restructure dataframe (pivot_wider)tidyverse
  • ok logo

Скачать Restructuring DataFrames in R: Using pivot_wider for Data Transformation бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Restructuring DataFrames in R: Using pivot_wider for Data Transformation или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Restructuring DataFrames in R: Using pivot_wider for Data Transformation бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Restructuring DataFrames in R: Using pivot_wider for Data Transformation

Learn how to *restructure data frames in R* using `pivot_wider` from the `tidyverse` package to create a clear and effective overview of datasets.
---
This video is based on the question https://stackoverflow.com/q/64808185/ asked by the user 'D. Studer' ( https://stackoverflow.com/u/7707288/ ) and on the answer https://stackoverflow.com/a/64808262/ provided by the user 'Karthik S' ( https://stackoverflow.com/u/10722752/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: restructure dataframe (pivot_wider)

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Restructuring DataFrames in R: Using pivot_wider for Data Transformation

When working with data in R, you may encounter situations where your data frame is not structured in a way that is easy to analyze. One common task is to restructure a data frame to create a clearer overview of your datasets. In this guide, we will walk through how to achieve this using the pivot_wider function from the tidyverse package.

The Problem: Understanding the Data Frame Structure

Imagine you have a data frame that describes multiple datasets and the variables they contain. For instance, consider the following example:

[[See Video to Reveal this Text or Code Snippet]]

This data frame (df) explicitly shows which variables (vars) belong to which dataset (df1, df2, or df3). However, the current form is not efficient for quick analysis or interpretation.

Desired Output

Your goal is to produce an overview table similar to the one below:

[[See Video to Reveal this Text or Code Snippet]]

In this table:

1 means the variable is included in the dataset.

0 means the variable is not included.

The Solution: Restructuring with pivot_wider

To achieve this transformation, we will use the pivot_wider function from the tidyr package. Let’s break down the steps to create the desired output.

Step-by-Step Guide

Load the Necessary Libraries

First, ensure you have the dplyr, tidyr, and tibble packages installed and loaded:

[[See Video to Reveal this Text or Code Snippet]]

Transform the Data Frame

We will employ the following code to perform the restructuring:

[[See Video to Reveal this Text or Code Snippet]]

Explanation of the Steps

Group by Variables: The group_by(vars) function is used to organize the data frame by variables.

Count Occurrences: The mutate(c = n()) line counts how many times each variable appears and creates a new column c to hold these counts.

Pivoting the Data Frame: The pivot_wider() function transforms the data frame from long to wide format.

id_cols = vars: vars is the identifier for rows.

names_from = df: new column names will be based on the values from the df column.

values_from = c: the values in the new table will come from the c column.

values_fill = 0: any missing values will be filled with 0.

Converting to Row Names: Finally, column_to_rownames('vars') will set the vars column as row names, giving you the neat output.

Conclusion

By following the steps outlined above, you should be able to restructure your data frame to become more analytical and straightforward. The use of the pivot_wider function from the tidyverse significantly simplifies the process of summarizing datasets and categorizing variables effectively.

Feel free to implement this method in your own work and see how it enhances your data analysis processes!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]