Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Accessing Layers Parameters in Torchscript/C++: A Guide to Extracting Output Depths

  • vlogize
  • 2025-04-01
  • 1
Accessing Layers Parameters in Torchscript/C++: A Guide to Extracting Output Depths
Torchscript/C++ jit::trace model - Accessing layers parametersc++parameterspytorchlayertorchscript
  • ok logo

Скачать Accessing Layers Parameters in Torchscript/C++: A Guide to Extracting Output Depths бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Accessing Layers Parameters in Torchscript/C++: A Guide to Extracting Output Depths или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Accessing Layers Parameters in Torchscript/C++: A Guide to Extracting Output Depths бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Accessing Layers Parameters in Torchscript/C++: A Guide to Extracting Output Depths

Learn simple methods to access parameters from Torchscript models in C++. This guide will teach you how to extract layer information effectively and efficiently.
---
This video is based on the question https://stackoverflow.com/q/70886218/ asked by the user 'Brandon' ( https://stackoverflow.com/u/13583672/ ) and on the answer https://stackoverflow.com/a/71176625/ provided by the user 'Brandon' ( https://stackoverflow.com/u/13583672/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Torchscript/C++ jit::trace model - Accessing layers parameters

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Accessing Layers Parameters in Torchscript/C++: A Guide to Extracting Output Depths

When working with machine learning models, particularly those developed using PyTorch, you might frequently encounter scenarios where you need to access specific parameters from a model you've trained. If you’ve traced your PyTorch model into Torchscript and loaded it into a C++ application, you might wonder how to access the parameters of specific layers—especially when it comes to extracting the output depth of layers like Conv2D.

The Challenge

You have a model tested and trained in Python, which has been traced using the torch.jit.trace method. Now, you want to load that model in C++ using torch::jit::load, but you need to access the last layer of the neural network to determine the output depth. For instance, you want to identify how many outputs you'll need to predefine in a tensor, like going from a Conv2D layer with 16 filters to 2 filters.

Possible Solutions

Accessing the last layer’s parameters can be tricky, especially when considering the following approaches:

1. Passing a Dummy Tensor

While it might not be the most elegant solution, one of the simplest methods is to pass a dummy tensor through the model and observe the output shape. Here’s how you can do it:

Create Dummy Input: Generate a tensor that fits the input shape your model expects.

Run the Model: Feed this tensor into your model.

Retrieve Shape: Check the output tensor to obtain the shape, particularly the depth.

This will allow you to effectively determine the number of outputs required without delving deep into parameter lists.

2. Accessing the Parameters Directly

Another immediate option you might consider is to access the parameters of the model directly. While this may be a more involved method, you can programmatically iterate through the layers and identify those that match specific criteria.

Parameter Inspection: You can loop through each layer and filter parameters by looking for keywords—like “softmax”—to identify the last layer.

Flexible Matching: Be cautious with this method as names may not be consistent across different implementations of models, making it less reliable.

Conclusion: A Pragmatic Approach

While the aforementioned solutions provide paths to explore, the dummy tensor method stands out as straightforward and efficient for most practical use cases. If a simpler solution meets your requirements without needing extensive parameter inspection, it is always a wise choice.

If you have found other innovative ways to achieve this within Torchscript and C++, your insights can greatly benefit the community. Feel free to share new methods and best practices!

Final Thoughts

Accessing model parameters in Torchscript can initially seem daunting, but understanding these methods will allow you to retrieve necessary outputs with clarity and confidence. Always remember that the simplicity of approach can often lead to the most effective solutions.

Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]