Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Force Parallel Lambda Execution Using AWS API Gateway Parameters

  • vlogize
  • 2025-10-06
  • 0
How to Force Parallel Lambda Execution Using AWS API Gateway Parameters
AWS Serverless: Force parallel lambda execution based on request or HTTP API parametersamazon web servicesaws lambdaserverless
  • ok logo

Скачать How to Force Parallel Lambda Execution Using AWS API Gateway Parameters бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Force Parallel Lambda Execution Using AWS API Gateway Parameters или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Force Parallel Lambda Execution Using AWS API Gateway Parameters бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Force Parallel Lambda Execution Using AWS API Gateway Parameters

Discover techniques to optimize AWS Lambda executions, explore challenges with ephemeral storage, and learn how to leverage EFS for better performance without negative impacts.
---
This video is based on the question https://stackoverflow.com/q/64046431/ asked by the user 'T. Altena' ( https://stackoverflow.com/u/7967438/ ) and on the answer https://stackoverflow.com/a/64046795/ provided by the user 'raupach' ( https://stackoverflow.com/u/132162/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: AWS Serverless: Force parallel lambda execution based on request or HTTP API parameters

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Managing AWS Lambda Executions: A Guide to Parallelism and Storage Optimization

In the world of cloud computing, AWS Lambda has become a popular choice for executing code in response to various events. However, there are instances where users face challenges with concurrent execution and storage limitations. One commonly encountered issue is the struggle to manage execution environments effectively, especially when dealing with large models in a serverless architecture. In this guide, we will explore the challenges of AWS Lambda execution and present potential solutions to optimize your environment for better performance.

The Challenge: AWS Lambda Execution Environments

When you invoke a Lambda function via an API Gateway, the underlying infrastructure handles the execution environments without user control. Here are the main points:

Single vs. Multiple Execution Environments: You cannot dictate whether a single Lambda function handles all incoming requests or if multiple instances run in parallel.

Storage Constraints: Each Lambda execution environment has a memory limit per request, including the ephemeral storage (the /tmp directory), which is capped at 512 MB. This can become problematic if your use case involves large models or data.

In many situations, particularly those involving large codebases (100-300 MB), invoking a second request with a different model can lead to running out of temporary storage because the Lambda function might be reusing an existing environment, which hasn’t yet cleared the previous invocation’s data.

The Solution: Leveraging EFS and Execution Controls

While it may not be possible to force AWS Lambda to create separate execution environments directly through parameter controls, there are effective strategies you can employ to manage this limitation.

1. Utilizing Amazon EFS (Elastic File System)

Amazon suggests using EFS to alleviate the restrictions associated with ephemeral storage. Here’s why it’s beneficial:

Expanded Storage Capacity: EFS provides virtually unlimited storage, which can help with larger models that exceed the 512 MB limit of the /tmp directory.

Persistent Data: Data stored in EFS persists beyond the lifespan of a Lambda execution, making it a suitable choice for applications that require ongoing access to large datasets.

Considerations:

While EFS may be slower than using the ephemeral /tmp directory, it can significantly reduce the risk of storage issues and help you maintain a cleaner application architecture.

2. Controlling Concurrency

Although AWS does not provide the ability to specifically manage which execution environment serves a request, you can set up concurrency limits to avoid capacity issues:

Set a Reserved Concurrency: By reserving concurrency for specific Lambda functions, you can ensure that instances are available to handle requests smoothly, thus mitigating the risk of hitting storage limits.

Implement Error Handling: Design your application to gracefully handle errors that may occur due to storage issues. This can include retry logic or fallback mechanisms to maintain service availability.

3. Experiment with Step Functions

Another potential approach is to implement AWS Step Functions, which help orchestrate multiple Lambda executions:

Orchestration: You can set up a state machine that dictates how and when Lambda functions are invoked.

Contextual Parameters: Provide conditional flows based on parameters, which can help in deciding which model to execute without overloading the existing storage.

Conclusion

While there is no straightforward way to control the execution environment of AWS Lambda, understanding how to leverage Ama

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]