Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть tinyML Talks: Exploring techniques to build efficient and robust TinyML deployments

  • EDGE AI FOUNDATION
  • 2022-03-07
  • 690
tinyML Talks: Exploring techniques to build efficient and robust TinyML deployments
  • ok logo

Скачать tinyML Talks: Exploring techniques to build efficient and robust TinyML deployments бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно tinyML Talks: Exploring techniques to build efficient and robust TinyML deployments или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку tinyML Talks: Exploring techniques to build efficient and robust TinyML deployments бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео tinyML Talks: Exploring techniques to build efficient and robust TinyML deployments

"Exploring techniques to build efficient and robust TinyML deployments"

Ashutosh Pandey
Lead Principal Systems Engineer
Infineon Technologies

Data is key to designing effective deep learning applications, where characteristics and availability of data vary from application to application. Edge deployment of deep learning methods requires privacy, low power usage, and robustness against out-of-distribution data. Furthermore, data for training and deployment tasks, often referred to as the training dataset and the calibration dataset, respectively, may not be available in some applications. In this talk, trade-offs between power and performance, given the availability of training data for supervised learning, will be highlighted. In addition, a dynamic fixed-point quantization scheme suitable for edge deployment in absence of sufficient calibration data will be presented, and trade-offs in compute resource for quantization, such as memory and cycles, will be discussed. Finally, edge deployment architecture utilizing deep learning methods to handle out-of-distribution data due to sensor degradation and alien operating conditions will be presented.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]