Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Building AI Framework from Scratch SetUp Part 5

  • DigiDon
  • 2025-12-29
  • 12
Building AI Framework from Scratch SetUp Part 5
  • ok logo

Скачать Building AI Framework from Scratch SetUp Part 5 бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Building AI Framework from Scratch SetUp Part 5 или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Building AI Framework from Scratch SetUp Part 5 бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Building AI Framework from Scratch SetUp Part 5

Creating an offline AI from scratch is a complex task, but here's a practical roadmap to get you started:

1. Foundational Knowledge First
Mathematics: Linear algebra, calculus, probability, statistics

Programming: Python is standard (learn NumPy, SciPy, pandas)

Core CS: Algorithms, data structures, optimization

2. Start with Simple Models
Don't jump to LLMs or complex neural networks immediately:

Classical Machine Learning (implement these first):
Linear/Logistic Regression (from scratch with NumPy)

Decision Trees/Random Forests

k-Nearest Neighbors

Naive Bayes Classifier

Sample project progression:
Digit recognition using MNIST dataset

Text classification (spam detection)

Recommendation system

3. Build Your Own Neural Network
Create from absolute scratch (no frameworks):
4. Local AI Stack
Set up offline development environment:

Essential Tools:
Python with Jupyter Notebook

ONNX Runtime for inference (works offline)

OpenBLAS for optimized math operations

SQLite for local data storage

Small Models to Run Locally:
TinyBERT or DistilBERT for NLP

MobileNet for computer vision

Whisper tiny for speech recognition

Phi-2 or TinyLlama (requires ~3-5GB RAM)

5. Practical Implementation Steps
Week 1-4: Math & Basic ML
Implement gradient descent from scratch

Build a perceptron

Create a full logistic regression system

Week 5-8: Neural Networks
Implement backpropagation manually

Build a 2-layer neural network

Add activation functions (ReLU, sigmoid, tanh)

Week 9-12: Computer Vision Basics
Implement CNN layers (convolution, pooling)

Train on CIFAR-10 dataset

Add dropout, batch normalization

Week 13-16: NLP Fundamentals
Build a simple RNN/LSTM

Implement word embeddings (Word2Vec from scratch)

Create a text generation model

6. Resources for Learning
Books: "Deep Learning" by Goodfellow, Bengio, Courville

Courses: Fast.ai (practical), Andrew Ng's ML/Deep Learning

Code: Implement papers from arXiv with explanations

Datasets: UCI Repository, Kaggle datasets (download first)

7. Optimization for Offline Use
Quantization: Reduce model precision (FP32 → INT8)

Pruning: Remove unimportant neurons

Knowledge Distillation: Train smaller student models

Embeddings: Use pre-computed embeddings offline

8. What "From Scratch" Really Means
Level 1: Using NumPy but no ML frameworks

Level 2: Implementing even matrix operations yourself

Level 3: C++/Rust implementation for performance

Level 4: Hardware-aware optimization

Realistic Expectations:
A useful offline AI assistant with basic Q&A: 6-12 months of serious effort

State-of-the-art performance: Not realistic solo in reasonable time

Focus areas: Specialized tasks (document search, personal assistant, image classification)

Quick Start Project:
Build a document search system:

Download Wikipedia dump

Create embeddings with Word2Vec (your implementation)

Build nearest-neighbor search with FAISS (compiled locally)

Create simple web interface

Would you like me to elaborate on any specific area or help you with a particular implementation step?

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]