Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Machine Learning Class 7 | Accuracy, Precision, Recall & R² Score Explained | Sir Nasir Hussain

  • Nasir Hussain
  • 2025-10-10
  • 33
Machine Learning Class 7 | Accuracy, Precision, Recall & R² Score Explained | Sir Nasir Hussain
machine learning class 7model evaluation metricsaccuracy precision recall f1 scorer2 score in pythonsir nasir hussainsaylani zait parkai and data science courseprecision vs recallconfusion matrix in pythonsklearn metrics tutorialpython model evaluationai course pakistandata science course in urdumachine learning evaluation tutorialmodel accuracy in pythonf1 score explainedr2 score regressionclassification metrics pythonai class saylani
  • ok logo

Скачать Machine Learning Class 7 | Accuracy, Precision, Recall & R² Score Explained | Sir Nasir Hussain бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Machine Learning Class 7 | Accuracy, Precision, Recall & R² Score Explained | Sir Nasir Hussain или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Machine Learning Class 7 | Accuracy, Precision, Recall & R² Score Explained | Sir Nasir Hussain бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Machine Learning Class 7 | Accuracy, Precision, Recall & R² Score Explained | Sir Nasir Hussain

📅 Date: 9 October 2025
🎓 Class: 7
📚 Topic: Accuracy, Precision, Recall & R² Score in Machine Learning
👨‍🏫 Instructor: Sir Nasir Hussain
🏫 Institute: Saylani Z.A.I.T Park — AI & Data Science Course

💡 Class Overview

Welcome to Machine Learning Class 7 of the AI & Data Science Course taught by Sir Nasir Hussain at Saylani Z.A.I.T Park.
In this class, we focus on one of the most crucial parts of any Machine Learning workflow — Model Evaluation Metrics.

When we build a model, it’s not enough to just train it. We must understand how well it performs, how accurate it is, and where it makes mistakes. That’s exactly what we’ll learn in today’s session.

🔍 What You’ll Learn in This Class

In this detailed and practical lecture, you’ll explore:

What are Evaluation Metrics in Machine Learning

Understanding Accuracy Score — how correct our model’s predictions are

Precision — how many of our positive predictions are actually correct

Recall (Sensitivity) — how many of the actual positives we captured

F1 Score — balancing Precision and Recall

R² Score (Coefficient of Determination) — measuring regression model performance

Using sklearn.metrics library for implementation

Confusion Matrix Visualization in Python using Matplotlib

Real-world project examples with Classification and Regression models

💻 Hands-on Python Practice

We’ll use Python, Scikit-learn, and Matplotlib to calculate and visualize these metrics.
You’ll learn to:

Import and use accuracy_score, precision_score, recall_score, and r2_score

Compare multiple models

Analyze model efficiency and overfitting issues

Choose the best model for your dataset

All code examples will be explained line-by-line for easy understanding.

🧩 Real-World Example

In this session, we’ll use a sample dataset (like predicting exam results or spam detection) and evaluate the model performance using these metrics.
You’ll clearly understand the difference between good and poor model predictions.

🚀 Why You Should Watch

By the end of this class, you’ll be able to:

Measure the accuracy and effectiveness of ML models

Visualize performance using confusion matrix

Use multiple evaluation metrics confidently

Build more reliable and professional Machine Learning projects

📚 Previous & Upcoming Classes

📘 Previous Class (Class 6): Classification Algorithms (Decision Tree, Random Forest, KNN, SVM)
📘 Next Class: Model Improvement Techniques and Hyperparameter Tuning

💬 Instructor Message

“In Machine Learning, understanding model evaluation is more important than just building the model. Without metrics, your ML model is like a car without a dashboard.”
— Sir Nasir Hussain

❤️ Support the Channel

If you’re enjoying this free AI & Data Science training, please Like, Share, and Subscribe to support the Saylani Z.A.I.T Park initiative!
Follow us for upcoming advanced topics like Naive Bayes, Ensemble Learning, and Deep Learning.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]