Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Restore numpy Seed Back to Its Former State?

  • vlogize
  • 2025-05-28
  • 1
How to Restore numpy Seed Back to Its Former State?
  • ok logo

Скачать How to Restore numpy Seed Back to Its Former State? бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Restore numpy Seed Back to Its Former State? или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Restore numpy Seed Back to Its Former State? бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Restore numpy Seed Back to Its Former State?

Discover how to preserve and restore the `numpy` random seed state in Python, ensuring consistent results in your random number generation functions.
---
This video is based on the question https://stackoverflow.com/q/67253631/ asked by the user 'Yarden Cohen' ( https://stackoverflow.com/u/5670969/ ) and on the answer https://stackoverflow.com/a/67254121/ provided by the user 'Jérôme Richard' ( https://stackoverflow.com/u/12939557/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: how to restore numpy seed back to its former state?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Restore numpy Seed Back to Its Former State?

When working with random number generation in Python, especially with the numpy library, you may encounter situations where you need to ensure the same random outputs for the same inputs. This is particularly important when testing or debugging your functions that depend on random outcomes. However, setting a seed in such a way can often disrupt the random state for other parts of the code. In this guide, we’ll explore how to effectively manage and restore the numpy random seed state.

The Problem

You want consistency in your function's random outputs, meaning that calling it multiple times with the same seed should yield the same results. However, there’s a catch! Once you set a seed using np.random.seed(), this changes the internal state of the random number generator, which can lead to inconsistency in other parts of your program. The attractive solution would be to "save" the random state before changing it and then restore it afterward.

Here’s a simplified scenario that demonstrates this problem:

[[See Video to Reveal this Text or Code Snippet]]

In the above function, setting the seed alters the generator's state. Consequently, any subsequent calls to random number generating functions will yield different results than expected.

The Solution

Best Practices

The official documentation for numpy warns against reseeding the default random generator directly. Instead, the recommended approach is to create a new instance of the random number generator. This means using the RandomState or creating your own random engine. Below is a breakdown of how we can achieve that.

Step-by-Step Implementation

Create a New Random State: Instead of reseeding, create an instance of RandomState with a specific seed.

Save the Current State: Before generating random numbers, save the current state of this random generator.

Restore the State After Use: After you've generated the random numbers, reset the generator to its original state.

Here is an example implementation:

[[See Video to Reveal this Text or Code Snippet]]

Explanation of the Code

Setting Up the Random State: We initialize a random number generator with a specific seed using SeedSequence, which allows fine-grained control over the randomness.

Saving and Restoring the State: The methods get_state() and set_state() allow us to capture the state before performing operations and revert to it afterward. This ensures that our changes do not influence the random states present elsewhere in the application.

Conclusion

By following this approach, you can effectively manage the random seed state in numpy, ensuring that your random behaviors are predictable when needed while preserving the global randomness for other parts of your code. This way, you can enjoy the robustness of random number generation without the pitfalls of seed contamination.

For your future coding endeavors, always remember the importance of managing random states, especially in complex applications where randomness plays a critical role.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]