Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Silvia Villa - Generalization properties of multiple passes stochastic gradient method

  • Institut des Hautes Etudes Scientifiques (IHES)
  • 2016-03-28
  • 787
Silvia Villa - Generalization properties of multiple passes stochastic gradient method
IHESSCIENCEMATHEMATIQUESSilvia Villa
  • ok logo

Скачать Silvia Villa - Generalization properties of multiple passes stochastic gradient method бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Silvia Villa - Generalization properties of multiple passes stochastic gradient method или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Silvia Villa - Generalization properties of multiple passes stochastic gradient method бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Silvia Villa - Generalization properties of multiple passes stochastic gradient method

The stochastic gradient method has become an algorithm of choice in machine learning, because of its simplicity and small computational cost, especially when dealing with big data sets. Despite its widespread use, the generalization properties of the variants of stochastic gradient method used in practice are relatively little understood. Most previous works consider generalization properties of SGM with only one pass over the data, while in practice multiple passes are usually considered. The effect of multiple passes has been studied extensively for the optimization of an empirical objective, but the role for generalization is less clear. In this talk, we start filling this gap studying the generalization properties of multiple passes stochastic gradient method for least square regression in an abstract non parametric setting. We show that, if all other parameters are fixed a priori, the number of passes over
the data indeed acts as a regularization parameter. The obtained bounds are sharp and matches those obtained with other regularized techniques such as ridge regression.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]