Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Efficiently Get Indexes of Items Greater or Less than Each Item in a NumPy Array Without Loops

  • vlogize
  • 2025-05-27
  • 0
Efficiently Get Indexes of Items Greater or Less than Each Item in a NumPy Array Without Loops
How to get indexes of items greater or less than each item in a NumPy array without using a loop?pythonpandasnumpymachine learningdecision tree
  • ok logo

Скачать Efficiently Get Indexes of Items Greater or Less than Each Item in a NumPy Array Without Loops бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Efficiently Get Indexes of Items Greater or Less than Each Item in a NumPy Array Without Loops или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Efficiently Get Indexes of Items Greater or Less than Each Item in a NumPy Array Without Loops бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Efficiently Get Indexes of Items Greater or Less than Each Item in a NumPy Array Without Loops

Learn how to optimize your Decision Tree algorithm by using NumPy to quickly get the indexes of items greater or less than each item in an array without looping over large datasets.
---
This video is based on the question https://stackoverflow.com/q/65951110/ asked by the user 'hubvoy' ( https://stackoverflow.com/u/14249814/ ) and on the answer https://stackoverflow.com/a/65951909/ provided by the user 'sim' ( https://stackoverflow.com/u/2074988/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to get indexes of items greater or less than each item in a NumPy array without using a loop?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Efficiently Get Indexes of Items Greater or Less than Each Item in a NumPy Array Without Loops

When working with large datasets, especially in machine learning projects like building decision trees, performance issues can arise when iterating through data points. A common task in data processing is to split data into groups where items are categorized as higher or lower than each item in a NumPy array, but using a for-loop for this task can lead to sluggish performance. In this post, we’ll explore a way to achieve this efficiently without loops.

The Problem

Imagine you have a DataFrame representing continuous values in a feature that might be used for training a decision tree model. You need to find indexes of items that are either greater than or less than each value in a NumPy array, and then compute the means of some target variable associated with those splits. Unfortunately, using a loop over the values can cause performance bottlenecks, especially when working with large datasets.

Example Scenario

Suppose you have the following code snippet trying to achieve this:

[[See Video to Reveal this Text or Code Snippet]]

This code can be quite slow, especially with DataFrames containing hundreds of thousands of rows.

The Solution

To eliminate the loop and utilize NumPy’s efficient vectorized operations, follow the steps below.

Step-by-Step Breakdown

Sorting the Indexes:
Use np.argsort to get the sorted indices of your values. This lets you arrange the values in ascending order, which is critical for efficient comparison.

[[See Video to Reveal this Text or Code Snippet]]

Cumulative Sum:
With the sorted targets, create a cumulative sum of these values. Use np.insert(np.cumsum(...), 0, 0)[:-1] to get an array that represents all the targets that are less than each sorted value.

[[See Video to Reveal this Text or Code Snippet]]

Unsorting the Values:
To get the results back to the original order of the array, you will need to "unsort" the cumulative sums. You'll use np.argsort on the sorted indexes again.

[[See Video to Reveal this Text or Code Snippet]]

Computing target_greater:
The values for the targets greater than or equal to each value can easily be obtained by subtracting the targets_less from the total sum of targets.

[[See Video to Reveal this Text or Code Snippet]]

Implementation Code

Here's the complete implementation of the suggested method:

[[See Video to Reveal this Text or Code Snippet]]

Important Notes

The provided method assumes that the values in your array (or column) are strictly distinct. If there are repeated values, you will need to adjust the code that computes the cumulative sum so that it accurately reflects these repetitions.

Perform tests with smaller datasets before scaling up to ensure correctness and efficiency.

Conclusion

By using NumPy's vectorized operations, we can significantly improve the performance of our decision tree splits without resorting to costly loops. This approach not only speeds up the computation but also simplifies the code, allowing you to handle larger datasets more efficiently.

If you're working on a machine learning project, implementing this optimized technique can make a noticeable difference in processing time. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]