Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Creating a Log-Normal Distribution Within a Defined Range in Python

  • vlogize
  • 2025-10-09
  • 0
Creating a Log-Normal Distribution Within a Defined Range in Python
Log Normal Distribution within a Rangepython 3.xnumpyscipy
  • ok logo

Скачать Creating a Log-Normal Distribution Within a Defined Range in Python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Creating a Log-Normal Distribution Within a Defined Range in Python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Creating a Log-Normal Distribution Within a Defined Range in Python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Creating a Log-Normal Distribution Within a Defined Range in Python

Learn how to create a log-normal distribution in Python without needing the mean and standard deviation by defining a range. Perfect for modeling projects!
---
This video is based on the question https://stackoverflow.com/q/64774475/ asked by the user 'AndyC' ( https://stackoverflow.com/u/13590178/ ) and on the answer https://stackoverflow.com/a/64775300/ provided by the user 'Damien Pageot' ( https://stackoverflow.com/u/14613449/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Log Normal Distribution within a Range

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Creating a Log-Normal Distribution Within a Defined Range in Python

When working on modeling projects, it’s often necessary to generate random samples that follow a specific distribution. One such distribution is the log-normal distribution, which is useful in various applications such as financial modeling, reliability engineering, and more. But what if you only have a defined range and lack specific parameters such as the mean and standard deviation? In this guide, we’ll explore how to create a log-normal distribution in Python using only a specified range.

The Problem Statement

You might be in a situation similar to the one presented by a user who was trying to create a log-normal distribution within a range of 50 to 250 days. Despite attempting some code snippets and manipulating parameters like the mean and standard deviation, they were looking for a cleaner approach that works purely within a defined range. The challenge is to generate log-normal values falling between given minimum and maximum limits.

Understanding Log-Normal Distribution

Before diving into the solution, let's clarify what a log-normal distribution is. If a random variable is log-normally distributed, then its logarithm is normally distributed. This results in a distribution that is skewed to the right—meaning it has a long tail on the positive side. The distribution is defined by two parameters:

Mean (µ): The average of the natural log of the variable.

Standard Deviation (σ): The spread or variability of the variable’s logarithm.

Proposed Solution

The key aim is to sample from a log-normal distribution without needing to specify the mean and standard deviation explicitly. We can accomplish this by using a method that focuses on the specified range of minimum and maximum values. Below, we provide a code snippet to illustrate this approach.

Code Snippet

Here's a simplified implementation that produces log-normal samples based on given minimum and maximum values, without requiring mean and standard deviation inputs:

[[See Video to Reveal this Text or Code Snippet]]

Explanation of the Code

Imports: We import the log function from the math module and random function from the random module.

Function Definition: The mylognorm function takes vmin (minimum value) and vmax (maximum value) as parameters.

Random Generation: Inside the function, vrand is generated using the random() function, which gives a uniform random float between 0.0 and 1.0.

Log Ratio Calculation: The logratio is computed to determine how the maximum position relates to the logarithm of the minimum.

Power Calculation: Finally, we compute the sample drawn from the log-normal distribution within the specified range by raising vmin to the calculated power value.

Generating Multiple Samples

If you want to generate multiple samples instead of a single value, you can loop the call to mylognorm() like so:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Creating a log-normal distribution within a defined range in Python can be accomplished without relying on specific mean and standard deviation values. By using a custom function that utilizes the logarithmic properties of the distribution, you can generate log-normal samples tailored to your project’s requirements. This approach is particularly useful in scenarios where clear parameters are not determined.

Feel free to experiment with the code and modify the range as needed for your modeling applications! If you have any questions or further ideas, don’t hesitate to share them in the comments below.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]