Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Enhance Your Data Visualization: Efficiently Convert XYZ Coordinates to Spherical Coordinates

  • vlogize
  • 2025-04-01
  • 7
Enhance Your Data Visualization: Efficiently Convert XYZ Coordinates to Spherical Coordinates
More efficient method to convert XYZ coords into Spherical Coordspythonnumpy
  • ok logo

Скачать Enhance Your Data Visualization: Efficiently Convert XYZ Coordinates to Spherical Coordinates бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Enhance Your Data Visualization: Efficiently Convert XYZ Coordinates to Spherical Coordinates или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Enhance Your Data Visualization: Efficiently Convert XYZ Coordinates to Spherical Coordinates бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Enhance Your Data Visualization: Efficiently Convert XYZ Coordinates to Spherical Coordinates

Discover a faster approach to convert XYZ coordinates to spherical coordinates using vectorized NumPy operations. Improve your Blender scripts and data plotting efficiency today!
---
This video is based on the question https://stackoverflow.com/q/71051610/ asked by the user 'TheJeran' ( https://stackoverflow.com/u/14121166/ ) and on the answer https://stackoverflow.com/a/71052266/ provided by the user 'Alex G' ( https://stackoverflow.com/u/9859213/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: More efficient method to convert XYZ coords into Spherical Coords

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Enhance Your Data Visualization: Efficiently Convert XYZ Coordinates to Spherical Coordinates

When working with 3D data visualization in software like Blender, converting Cartesian coordinates (XYZ) to spherical coordinates can often be a bottleneck in performance, particularly when dealing with large datasets. In this post, we will explore a more efficient way to handle this conversion, allowing you to achieve faster results in your data plotting endeavors.

Understanding the Challenge: The Need for Efficiency

The original method for converting XYZ coordinates to spherical coordinates uses a custom function that applies transformations individually across each vertex. While functional, this approach is not optimized for speed—it utilizes np.apply_along_axis, which processes elements in a less efficient way compared to vectorized operations available within NumPy.

Original Approach

Here’s a quick recap of the original conversion method:

[[See Video to Reveal this Text or Code Snippet]]

While this does perform the necessary calculations, it isn’t optimized for the large arrays typically seen in data plotting, giving rise to the question: can we do better?

The Solution: Vectorized Operations for Speed

To streamline the conversion, we can leverage NumPy’s array capabilities to perform vectorized operations. This means we process all coordinates at once, rather than looping through them one by one. Below, we’ll define a new function that processes the coordinates in a more efficient way.

Proposed Enhanced Method

The new method redefines the conversion and takes the following form:

[[See Video to Reveal this Text or Code Snippet]]

Breakdown of the Function

Input Handling: The input spherical_coordinates should be a NumPy array of shape (-verts, 3), containing XYZ coordinates.

Vectorized Conversion:

phi and theta represent the angles in radians converted from degrees using vector multiplication.

We use cosine and sine operations on the entire array at once, which significantly speeds up the computation.

Combining Results: Finally, we stack the results into a single output array using np.column_stack.

Additional Recommendations

Function Naming: It’s important to note that the proposed method calculates Cartesian coordinates from spherical coordinates, so renaming the function to spherical_to_cartesian provides clearer intent.

Testing Performance: After implementing the new method, it may be beneficial to test the performance against the original function, particularly with large datasets.

Conclusion

Adopting a vectorized approach to converting XYZ coordinates into spherical coordinates not only speeds up your computations but enhances your overall data processing efficiency. By utilizing the power of NumPy, you can significantly reduce computation time, allowing you to focus more on analyzing your data and less on managing performance bottlenecks.

This enhancement is especially beneficial in contexts like Blender, where smooth interactivity and efficient data handling are paramount. With the right tools, your data visualization experiences can become more robust and responsive. Happy coding and plotting!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]