🔥 Day 2 of the LLM Bootcamp in Hindi!
Today, we dive deep into Hugging Face and Open-Source LLMs like Gemma, LLaMA, and Mistral — and learn how to run them locally or via the cloud.
We’ll also cover model parameters, quantization, GPUs vs CPUs, and how to choose the right model for your system.
🌟🌟 LLM Notes: https://topmate.io/helloworldbyprince...
📌 Claim Your Free Resource: https://forms.gle/12TYVvz2s8ynBzpU7
👇 Don’t forget to LIKE, SHARE, & SUBSCRIBE for more dev-friendly videos!
Follow me on:
💼 LinkedIn► / iamprince
📷 Instagram► / helloworldbyprince
📲 Telegram► https://telegram.me/helloworldbyprince
🐦 Twitter► / prince_king_
►Our Playlists on:-
🔥 Tree: • Tree Data Structure & Algorithms Full Cour...
🔥 Stack & Queue: • Stack & Queue Data Structure & Algorithms ...
🔥 Hashing: • Hashing Data Structure | Complete guide Fo...
🔥 Graph: • Graph Data Structure & Algorithms Full Cou...
🔥 Matrix: • Matrix (Multidimensional Array) Complete g...
🔥 Recursion & DP: • Recursion
🔥 Heap: • Heap Data Structure & Algorithms Full Cour...
🔥 Linked List: • Linked List Data Structure & Algorithms Fu...
🔥 STL: • Standard Template Library (STL) By Hello W...
🔥 Leetcode: • LeetCode Solutions And Interview Preparati...
🔥Competitive Programming: • Full course in Competitive programming [ H...
🔥 C++ Full Course: • C++ full Course in HINDI
🔥 Algorithms: • L-01 || Prefix Sum Array || Algorithms
🔥 Data Structure: • Data Structures with Code Practice | Hello...
📍 What You’ll Learn in this video:
0:00 – Intro and quick recap (Day 1 summary)
1:05 – Today’s goal: use LLMs to build apps
1:43 – Why Open-Source LLMs (privacy, control, cost)
3:08 – Data privacy concerns with closed models
3:32 – Run open-source LLMs locally or online
4:11 – Examples: Gemma (Google), Llama, Mistral
5:29 – What is Hugging Face? Models, datasets, Spaces, Inference API
7:01 – Hugging Face vs GitHub (analogy)
7:32 – Host vs local: using HF Inference API
9:18 – Plan: pick a model, host/use via API, or run locally
10:46 – Why GPUs for AI (parallel math) vs CPU
12:32 – GPU speed analogy and matrix math in LLMs
15:10 – Can we run on CPU? Yes, but slower (small models)
16:39 – Small vs large models (distil, TinyLlama, GPT‑2 small, Mistral)
18:58 – Model parameters explained (intelligence vs compute)
20:37 – Examples: GPT‑2 ~124M, GPT‑3 ~175B (resource needs)
24:45 – RAM matters: model size vs available memory
26:07 – Practical tip: choose models that fit 4–6GB RAM
27:54 – Why models are large: data type precision (fp32, int8, int4)
30:11 – Quantization explained (smaller, faster models)
31:32 – Real-world use: quantized models work well for dev
32:03 – Reading model names (e.g., Mistral‑7B‑Instruct‑GGUF)
35:02 – Big models (65B–180B): need high-end GPUs or cloud
35:39 – Finding models on Hugging Face (filters: task, params, quantized)
38:22 – Quick demo plan: run GPT‑2 via Transformers on Colab
43:30 – Key params in generation (max length, num return sequences)
45:21 – Recap: HF, open-source, parameters, quantization, Colab
46:26 – CTA: like, comment, subscribe
46:49 – Outro and next video teaser
🔔 Subscribe & turn on notifications so you don’t miss the next lessons!
#LLMBootcamp #AIinHindi #ChatGPT #ClaudeAI #MistralAI #LLMTutorial #artificialintelligence
llm bootcamp hindi,ai bootcamp 2025,large language model hindi,learn llm from scratch,ai course hindi,ollama tutorial hindi,langchain tutorial hindi,prompt engineering hindi,build ai chatbot hindi,huggingface tutorial hindi,gemini api tutorial hindi,ai for beginners hindi,llm course for students,free ai bootcamp hindi,how to learn llm 2025,ai tutorial hindi,gpt tutorial hindi,mistral tutorial hindi,llama tutorial hindi,claude tutorial hindi,gemma tutorial hindi,ai coding bootcamp 2025,ai in hindi,ai playlist hindi,ai course free,ai career hindi,chatgpt hindi tutorial,build llm app hindi,ai chatbot hindi
Comment "#Princebhai" if you read this 😉😉
Информация по комментариям в разработке