Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Drop Rows in Pandas Where IDs Are Not Totally Duplicated

  • vlogize
  • 2025-04-04
  • 0
How to Drop Rows in Pandas Where IDs Are Not Totally Duplicated
Pandas - Drop rows where *not* totally duplicatedpythonpandas
  • ok logo

Скачать How to Drop Rows in Pandas Where IDs Are Not Totally Duplicated бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Drop Rows in Pandas Where IDs Are Not Totally Duplicated или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Drop Rows in Pandas Where IDs Are Not Totally Duplicated бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Drop Rows in Pandas Where IDs Are Not Totally Duplicated

Learn how to efficiently remove rows from your Pandas DataFrame when certain conditions regarding ID groups are met. This guide will help you streamline your data cleaning tasks!
---
This video is based on the question https://stackoverflow.com/q/72888273/ asked by the user 'keynesiancross' ( https://stackoverflow.com/u/558619/ ) and on the answer https://stackoverflow.com/a/72888503/ provided by the user 'mozway' ( https://stackoverflow.com/u/16343464/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Pandas - Drop rows where not totally duplicated

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Introduction

Working with data often requires cleaning it up to ensure accuracy and consistency. One common challenge you may encounter is needing to drop specific rows in a Pandas DataFrame based on certain conditions. For example, you might find yourself needing to remove rows where, for a given group, there exists more than one unique value. In this post, we will tackle the problem of dropping rows in a DataFrame based on the uniqueness of values in a specific column grouped by another column.

Let's delve into a specific scenario where you want to drop all rows associated with certain groups in your DataFrame based on the ID_Dets and ID_Dets_2 columns.

The Problem

Suppose you have a DataFrame that consists of several columns, including:

ID_Dets: a group identifier.

ID_Dets_2: a secondary identifier that may contain unique values for each group in ID_Dets.

Your goal is to remove all rows in the DataFrame where, for any group in ID_Dets, there is more than one unique value in ID_Dets_2. Let's visualize this with an example:

IndexOther ColumnsID_DetsID_Dets_211aga4513af2314da3415aga3416as0017ga0018asg0119asa014ga125aah12The Solution

To solve this problem, we can leverage the powerful features of Pandas. Here are two effective methods to drop the unnecessary rows from our DataFrame.

Method 1: Using Groupby and Transform

You can count the number of unique values in each group and filter to keep only the groups with a single unique value. Here's how it looks in code:

[[See Video to Reveal this Text or Code Snippet]]

Method 2: Using Filter

Alternatively, you can use the filter method with a lambda function that checks for groups with one or fewer unique values:

[[See Video to Reveal this Text or Code Snippet]]

Output of the Filtered DataFrame

After applying either of the methods above, the resulting DataFrame will look like this:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By applying either of the methods outlined above, you can easily drop rows in a Pandas DataFrame based on the uniqueness of values in a specified column across grouped data. This technique is invaluable for data cleaning and preparation tasks, allowing you to maintain only the relevant data you need for analysis.

With these powerful, yet simple, commands in your toolbox, you can ensure your data remains consistent and reliable as you work towards your data analysis goals.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]