Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Detecting COVID-19 From Chest X-Ray| Training a Convolutional Neural Network| Deep Learning| VGG16

  • Machine Learning Researcher
  • 2020-06-28
  • 1969
Detecting COVID-19 From Chest X-Ray| Training a Convolutional Neural Network| Deep Learning| VGG16
COVID - 19 Outbreak Prediction using Machine Learning | Machine Learning TrainingOxford Mathematician explains SIR Disease Model for COVID-19 (Coronavirus)Learn to Build a Coronavirus TrackerDetecting COVID-19 from X-Ray😮| Training a Convolutional Neural Network | Deep LearningCoronavirus Outbreak Prediction Using Machine Learning | Predicted vs ActualCOVID-19 ModelingCan deep learning AI help with detecting COVID-19/coronavirus?Coronavirus Deep Learning Competition
  • ok logo

Скачать Detecting COVID-19 From Chest X-Ray| Training a Convolutional Neural Network| Deep Learning| VGG16 бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Detecting COVID-19 From Chest X-Ray| Training a Convolutional Neural Network| Deep Learning| VGG16 или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Detecting COVID-19 From Chest X-Ray| Training a Convolutional Neural Network| Deep Learning| VGG16 бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Detecting COVID-19 From Chest X-Ray| Training a Convolutional Neural Network| Deep Learning| VGG16

Detecting COVID-19 in X-ray images with Keras, TensorFlow, and Deep Learning.In this tutorial, you will learn how to automatically detect COVID-19 in a hand-created X-ray image dataset using Keras, TensorFlow, and Deep Learning.

NOTE: YOU MUST TAKE MORE THAN 25 EPOCHES FOR GOOD ACCURACY

-------------------------------------------------------------------------------------------------------------
ALL CODE AND DATA SET IS AVAILABLE HERE: https://github.com/anandraj8756/COVID...
----------------------------------------------------------------------------------------------------------------

we will discuss how you can make your own machine learning model to successfully detect COVID-19 from Chest X-Rays by building a Simple Convolution Neural Network.

-------------------------------------------------------------------------------------------------------
Dataset Preparation
Understanding the Dataset
Building a CNN
Model Training
-------------------------------------------------------------------------------------------------------

1. Sample an open source dataset of X-ray images for patients who have tested positive for COVID-19
2. Sample “normal” (i.e., not infected) X-ray images from healthy patients
3. Train a CNN to automatically detect COVID-19 in X-ray images via the dataset we created
4. Evaluate the results from an educational perspective
-----------------------------------------------------------------------------------------------

In order to create the COVID-19 X-ray image dataset:

1. Parsed the metadata.csv file found in Dr. Cohen’s repository.
2. Selected all rows that are:
a) Positive for COVID-19 (i.e., ignoring MERS, SARS, and ARDS cases).
b) Posterioranterior (PA) view of the lungs. I used the PA view as, to my knowledge, that was the view used for my “healthy” cases, as discussed below; however, I’m sure that a medical professional will be able clarify and correct me if I am incorrect (which I very well may be, this is just an example)


-------------------------------------------------------------------------

Our three command line arguments:

1) --dataset: The path to our input dataset of chest X-ray images.
2) --plot: An optional path to an output training history plot. By default the plot is named plot.png unless otherwise specified via the command line.
3) --model: The optional path to our output COVID-19 model; by default it will be named covid19.model.
---------------------------------------------------------------------------------------------

import the necessary packages
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.applications import VGG16
from tensorflow.keras.layers import AveragePooling2D
from tensorflow.keras.layers import Dropout
from tensorflow.keras.layers import Flatten
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import Input
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.utils import to_categorical
from sklearn.preprocessing import LabelBinarizer
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from imutils import paths
import matplotlib.pyplot as plt
import numpy as np
import argparse
import cv2
import os


#COVID19#DeepLearningTutorial#VGG16
-----------------------------------------------------------------------------------------------------

PREPARE THE DATASET:
COVID-19 IMAGES OF CHEST X-RAY : https://github.com/ieee8023/covid-che...
NORMAL IMAGES OF CHEST X-RAY: https://www.kaggle.com/paultimothymoo...
------------------------------------------------------------------------------------------------------

RESOURCES:

1) https://www.pyimagesearch.com/
2) https://docs.google.com/presentation/...

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]