Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть General Purpose Image Tampering Detection using Convolutional Neural Network and Local Optimal

  • Signal & Image Processing : An Intnational Journal
  • 2021-07-22
  • 80
General Purpose Image Tampering Detection using Convolutional Neural Network and Local Optimal
  • ok logo

Скачать General Purpose Image Tampering Detection using Convolutional Neural Network and Local Optimal бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно General Purpose Image Tampering Detection using Convolutional Neural Network and Local Optimal или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку General Purpose Image Tampering Detection using Convolutional Neural Network and Local Optimal бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео General Purpose Image Tampering Detection using Convolutional Neural Network and Local Optimal

Digital image tampering detection has been an active area of research in recent times due to the ease with which digital image can be modified to convey false or misleading information. To address this problem,
several studies have proposed forensics algorithms for digital image tampering detection. While these approaches have shown remarkable improvement, most of them only focused on detecting a specific type of
image tampering. The limitation of these approaches is that new forensic method must be designed for each new manipulation approach that is developed. Consequently, there is a need to develop methods
capable of detecting multiple tampering operations. In this paper, we proposed a novel general purpose image tampering scheme based on CNNs and Local Optimal Oriented Pattern (LOOP) which is capable of
detecting five types of image tampering in both binary and multiclass scenarios. Unlike the existing deep learning techniques which used constrained pre-processing layers to suppress the effect of image content
in order to capture image tampering traces, our method uses LOOP features, which can effectively subdue the effect image content, thus, allowing the proposed CNNs to capture the needed features to distinguish
among different types of image tampering. Through a number of detailed experiments, our results demonstrate that the proposed general purpose image tampering method can achieve high detection accuracies in individual and multiclass image tampering detections respectively and a comparative
analysis of our results with the existing state of the arts reveals that the proposed model is more robust than most of the exiting methods.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]