Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to use the remainder and factor theorem for polynomials

  • Brian McLogan
  • 2015-10-06
  • 12000
How to use the remainder and factor theorem for polynomials
polynomialequationfunctiongraphwritegraphingzerossolutionsfactoringsolvingsolvelong divisionsynthetic divisioncompleting the squareleading coefficientdegreerational functionrational equationf(x) = 5x^3 - 12x^2 - 23x + 42free math videosbrian mcloganremainder and factor theorem for polynomialsremainder and factor theoremhow to use the remainder and factor theorempolynomialsfactored formremainder theoremfactor theoremzeros of polynomials
  • ok logo

Скачать How to use the remainder and factor theorem for polynomials бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to use the remainder and factor theorem for polynomials или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to use the remainder and factor theorem for polynomials бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to use the remainder and factor theorem for polynomials

👉 Learn about and how to apply the remainder and factor theorem. The remainder theorem states that f(a) is the remainder when the polynomial f(x) is divided by x - a. Thus, given a polynomial, f(x), which is to be divided by a linear binomial of form x - a, the remainder of the division is given by f(a).

The factor theorem is a special case of the remainder theorem which states that if f(a) = 0, then x - a is a factor of the polynomial f(x). Thus, given a polynomial, f(x), to see if a linear binomial of form x - a is a factor of the polynomial, we solve for f(a). If f(a) = 0, then x - a is a factor, and x - a is not a factor otherwise.

These two theorems help us understand how we better understand the relationship between a polynomial function, its factors, and the remainder. Using the theorem also can save us time from determining if we have a factor or zero of a polynomial without having to use division.

👏SUBSCRIBE to my channel here: https://www.youtube.com/user/mrbrianm...

❤️Support my channel by becoming a member:    / @brianmclogan  

🙋‍♂️Have questions? Ask here: https://forms.gle/dfR9HbCu6qpWbJdo7

🎉Follow the Community:    / mrbrianmclogan  

Organized Videos:
✅Remainder and Factor Theorem
   • Remainder and Factor Theorem  
✅Remainder and Factor Theorem | Learn About
   • Remainder and Factor Theorem | Learn About  
✅How to apply the Remainder and Factor Theorem
   • How to apply the Remainder and Factor Theorem  


🗂️ Organized playlists by classes here:    / mrbrianmclogan  

🌐 My Website - http://www.freemathvideos.com

🎯Survive Math Class Checklist: Ten Steps to a Better Year: https://www.brianmclogan.com/email-ca...

Connect with me:
⚡️Facebook -   / freemathvideos  
⚡️Instagram -   / brianmclogan  
⚡️Twitter -   / mrbrianmclogan  
⚡️Linkedin -   / brian-mclogan-16b43623  

👨‍🏫 Current Courses on Udemy: https://www.udemy.com/user/brianmclog...

👨‍👩‍👧‍👧 About Me: I make short, to-the-point online math tutorials. I struggled with math growing up and have been able to use those experiences to help students improve in math through practical applications and tips. Find more here: https://www.freemathvideos.com/about-me/

#polynomials #brianmclogan

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]