Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Mastering Lemmatization in spaCy: The Missing Preprocessing Function

  • vlogize
  • 2025-08-23
  • 1
Mastering Lemmatization in spaCy: The Missing Preprocessing Function
Am I missing the preprocessing function in spaCy's lemmatization?pythonspacylemmatization
  • ok logo

Скачать Mastering Lemmatization in spaCy: The Missing Preprocessing Function бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Mastering Lemmatization in spaCy: The Missing Preprocessing Function или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Mastering Lemmatization in spaCy: The Missing Preprocessing Function бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Mastering Lemmatization in spaCy: The Missing Preprocessing Function

Discover how to effectively use `spaCy` for lemmatization by incorporating essential preprocessing steps to filter out stopwords and punctuation.
---
This video is based on the question https://stackoverflow.com/q/64185831/ asked by the user 'hanreli' ( https://stackoverflow.com/u/13843119/ ) and on the answer https://stackoverflow.com/a/64188206/ provided by the user 'Wiktor Stribiżew' ( https://stackoverflow.com/u/3832970/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Am I missing the preprocessing function in spaCy's lemmatization?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Mastering Lemmatization in spaCy: The Missing Preprocessing Function

If you've been working with natural language processing in Python, you might have encountered spaCy, a powerful library that helps in processing language. One common task is lemmatization, which entails reducing words to their base or root form. However, users often find themselves perplexed when they get unexpected results, such as punctuation and stopwords in their output. If you've ever asked, "Why am I not getting clean lemmas?" then this post is for you.

Understanding the Problem

In your quest for extracting lemmas from a text document, you may have encountered an issue where your code returns unwanted elements. Here's a closer look at the problem you faced:

Example Code

[[See Video to Reveal this Text or Code Snippet]]

Expected vs. Actual Results

You hoped for a result like this on execution:

[[See Video to Reveal this Text or Code Snippet]]

Instead, you received:

[[See Video to Reveal this Text or Code Snippet]]

The Root of the Problem

The primary issue was the inclusion of stopwords and punctuation in the lemmatized output. By default, spaCy includes all tokens in the document during lemmatization, which is not what you want when focusing on meaningful lemmas.

The Solution

To filter out unwanted elements like stopwords and punctuation, you can enhance your code by adding certain conditions within your list comprehension. Let’s break down the solution step by step.

Updated Code

Here's how you can modify your original code:

[[See Video to Reveal this Text or Code Snippet]]

Breakdown of the Code

Token Iteration: The code iterates through each token in the document (for token in doc).

Exclude Stopwords: By adding if not token.is_stop, you ensure that common stopwords (like 'the', 'is', and 'for') are excluded from your results.

Exclude Punctuation: Adding and not token.is_punct filters out punctuation (like '!', '.', and '?') from your lemmatization output.

Result of the Updated Code

Once you apply these changes, your output will be clean and as expected:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By incorporating preprocessing steps into your lemmatization routine in spaCy, you can achieve more accurate and meaningful results. The ability to filter out stopwords and punctuation is crucial for most text analysis tasks, making your analysis clearer and more effective.

Now, you're armed with the knowledge to master lemmatization in spaCy. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]