Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Kristian Sommer Thygesen (DTU): Data-Driven Materials Design

  • TACO: Taming Complexity in Materials Modeling
  • 2023-04-25
  • 431
Kristian Sommer Thygesen (DTU): Data-Driven Materials Design
Materials ScienceSemiconductorsPhotovoltaics2D MaterialsMachine Learning
  • ok logo

Скачать Kristian Sommer Thygesen (DTU): Data-Driven Materials Design бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Kristian Sommer Thygesen (DTU): Data-Driven Materials Design или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Kristian Sommer Thygesen (DTU): Data-Driven Materials Design бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Kristian Sommer Thygesen (DTU): Data-Driven Materials Design

Kristian Sommer Thygesen (Technical University of Denmark): Data-Driven Materials Design

TACO Colloquium on April 17, 2023.

Abstract: Automated workflows for data generation and -exploitation (supervised and unsupervised) have long been employed in fields like biochemistry and drug discovery, but are only now making their way into materials science. I will begin this talk by introducing the Atomic Simulation Recipes (ASR) – an open-source Python framework for constructing and executing materials simulation workflows [https://doi.org/10.21105/joss.01844, https://iopscience.iop.org/article/10...]. Next, I will give some examples of its use in materials design studies including the search for indirect band gap semiconductors for thin-film photovoltaics [https://doi.org/10.1021/jacs.2c07567] and the Computational 2D Materials Database (C2DB), which contains calculated properties of several thousand 2D materials in monolayer and bilayer form [https://iopscience.iop.org/article/10...]. Finally, I will discuss how deep generative models can help to suggest new types of materials by learning the patterns in known data sets of stable materials [https://doi.org/10.1038/s41524-022-00...]. If time allows, I will discuss machine learning of GW band structures from descriptors encoding the electronic structure of standard DFT calculations [https://doi.org/10.1038/s41467-022-28...].

Bio: Prof. Thygesen develops and applies first-principles methods based on density functional theory and many-body perturbation theory to describe the electronic structure of materials with a particular focus on low-dimensional materials. He is also interested in data-driven approaches to materials design and the development of automated high-throughput workflow software. Prof. Thygesen received his Ph.D. from the Technical University of Denmark (DTU) in 2005. Today, he is heading the section for Computational Atomic-scale Materials Design (CAMD) at DTU, which is home to core developers of the GPAW electronic structure code and the Atomic Simulation Environment (ASE). He is involved in a number of international research projects including the EU Center of Excellence NOMAD.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]