Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Stopping PySpark from Reading Empty Strings as null in CSV Files

  • vlogize
  • 2025-04-17
  • 14
Stopping PySpark from Reading Empty Strings as null in CSV Files
  • ok logo

Скачать Stopping PySpark from Reading Empty Strings as null in CSV Files бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Stopping PySpark from Reading Empty Strings as null in CSV Files или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Stopping PySpark from Reading Empty Strings as null in CSV Files бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Stopping PySpark from Reading Empty Strings as null in CSV Files

Discover how to configure PySpark to interpret empty strings correctly instead of treating them as null values in your CSV data.
---
This video is based on the question https://stackoverflow.com/q/67673463/ asked by the user 'milton' ( https://stackoverflow.com/u/5496062/ ) and on the answer https://stackoverflow.com/a/67675622/ provided by the user 'Kafels' ( https://stackoverflow.com/u/6080276/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: pyspark can't stop reading empty string as null (spark 3.0)

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Stopping PySpark from Reading Empty Strings as null in CSV Files

When working with large datasets in PySpark, especially those coming from CSV files, encountering the issue where empty strings are read as null can lead to complications in your data analysis. If you've faced this problem in Spark 3.0 or later versions, you're not alone! This guide will guide you through understanding why this occurs and how you can address it effectively.

The Problem: Empty Strings Interpreted as null

Using a specific CSV format where the delimiter is ^, you may have encountered an empty string in your data. For instance, let's consider the following CSV structure:

IDNameAge01Mike20Upon reading this CSV file into a DataFrame, the expected output should retain the empty strings. However, PySpark defaults to interpreting these empty cells as null, resulting in the following display:

IDNameAge0nullnull1Mike20This behavior can be frustrating, especially when you prefer to keep those empty values as actual empty strings rather than null values.

The Solution: Using na.fill()

Since version 2.0.1, Spark has been treating empty values as null by default, which is likely the root cause of your issue. However, there’s a straightforward way to handle this using the DataFrame.na.fill() function. Here’s how to adjust your code to fill in those empty values with empty strings instead of null:

Step-by-Step Instructions

Read the CSV File: Start by reading your CSV using the appropriate delimiter and ensuring headers are recognized.

[[See Video to Reveal this Text or Code Snippet]]

Fill Empty Values: Next, fill the empty values in specific columns (in this case, "name" and "age") with empty strings. If you want to apply it to all columns, you can do that too.

[[See Video to Reveal this Text or Code Snippet]]

Alternatively, if you wish to fill all columns:

[[See Video to Reveal this Text or Code Snippet]]

Display the DataFrame: Finally, output your DataFrame to verify that the empty strings have been retained.

[[See Video to Reveal this Text or Code Snippet]]

Example Output

Upon running the code as described, your DataFrame should now look like this:

[[See Video to Reveal this Text or Code Snippet]]

Now, empty string values are preserved, and you can continue your data analysis without worrying about dealing with null values where there should be empty strings.

Conclusion

Dealing with data in PySpark can sometimes be tricky, especially when it comes to how empty strings and null values are interpreted. By using the na.fill() function, you can effectively control how your data is represented, ensuring it meets your analysis needs. If you find yourself grappling with similar challenges, don't hesitate to revisit this blog for a concise solution on how to maintain your data's integrity!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]