Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Mark Wang - Using GitHub Copilot in R Shiny Development

  • Posit PBC
  • 2024-10-31
  • 539
Mark Wang - Using GitHub Copilot in R Shiny Development
  • ok logo

Скачать Mark Wang - Using GitHub Copilot in R Shiny Development бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Mark Wang - Using GitHub Copilot in R Shiny Development или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Mark Wang - Using GitHub Copilot in R Shiny Development бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Mark Wang - Using GitHub Copilot in R Shiny Development

Generative AI tools, like the GitHub Copilot, are revolutionizing software development, by automating routine tasks and boosting programmers' productivity. R Shiny development is uniquely positioned to benefit from GitHub Copilot. Copilot can accelerate the process by automating front-end tasks, especially those involving HTML and JavaScript, as well as testing and documentation, thus letting R Shiny developers focus more on the value-added aspects of data science and statistics.

The basic workflow of using GitHub copilot in R Shiny development has three parts: prompt, context, and iteration. Three types of prompts: command, question, and lead-in, all have strong use cases in R development. Specific prompts create more helpful results as compared to vague ones, and Copilot can help add more specificity to your prompts when you are not familiar with the domain topic. The most important source of context for Copilot is typically your codebase, which should be well-organized and open in your IDE. Additionally, knowledge on the internet, as well as simple and concrete examples, can also be valuable contexts. However, sensitive personal information in your context can stop Copilot from generating appropriate responses. Iteration is modifying and enriching your prompt and context to improve the quality of Copilot's responses. Function and module documentation is a valuable step of iteration. As R Shiny is often used with fast-hanging data, Copilot serves as a powerful tool in the iteration from static to dynamic app testing in the shinytest2 framework.

As we iterate over our prompt and context to generate better responses from Copilot, it is worthwhile to build an internal knowledge base in the form of prompt dictionaries. A Copilot knowledge base can include information specific to your organization that can be reused across projects, such as security and compliance conventions, code and documentation standards, and employment process and environment.

Talk by Mark Wang


Slides: https://1drv.ms/b/c/fd70c8a06be32527/...
GitHub Repo: https://github.com/ZIBOWANGKANGYU/pos...

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]