Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Average Blocks of Numbers Separated by Null in PySpark

  • vlogize
  • 2025-05-27
  • 0
How to Average Blocks of Numbers Separated by Null in PySpark
How to average a block of numbers separated by null in pyspark?apache sparkpysparkapache spark sql
  • ok logo

Скачать How to Average Blocks of Numbers Separated by Null in PySpark бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Average Blocks of Numbers Separated by Null in PySpark или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Average Blocks of Numbers Separated by Null in PySpark бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Average Blocks of Numbers Separated by Null in PySpark

Learn to calculate the average of blocks of numbers in PySpark, handling null values effectively with window functions.
---
This video is based on the question https://stackoverflow.com/q/65921453/ asked by the user 'bolla' ( https://stackoverflow.com/u/5539351/ ) and on the answer https://stackoverflow.com/a/65921633/ provided by the user 'mck' ( https://stackoverflow.com/u/14165730/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to average a block of numbers separated by null in pyspark?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Averaging Blocks of Numbers Separated by Null in PySpark

In the realm of data processing, encountering null values is a frequent challenge. Specifically, if you’re using PySpark to manage data, analyzing blocks of numbers that are separated by null values can lead to complications. This guide guides you through a solution to this issue, allowing you to efficiently calculate the average of consecutive numbers differentiated by null entries.

Understanding the Problem

Imagine you have a PySpark DataFrame detailing ages, but some entries are null. Here’s an example:

IDAge1null2103904null5null6null72083097010nullYour goal is to average these ages while only considering consecutive non-null numbers. The expected output DataFrame would look as follows:

First_IDLast_IDAvg_Age23507940Step-by-Step Solution

To achieve this, we will use PySpark window functions along with some clever column manipulations.

Step 1: Create a Block Identifier

First, we need to identify blocks of consecutive non-null ages. We can do this by checking if the current row is not null and if the previous row is null.

Here’s how you can implement this:

[[See Video to Reveal this Text or Code Snippet]]

Explanation:

Lag Function: The lag function checks the previous entry in the ‘age’ column.

Block Creation: We create a new column (block) that contains integers indicating the start of a new block wherever we find a non-null age after a null.

Aggregation: Using the sum function over the window allows us to assign the same block number to consecutive non-null values.

Step 2: Aggregating Results

Once we have the blocks identified, we can filter out the null blocks and group the data to calculate the averages for each block.

[[See Video to Reveal this Text or Code Snippet]]

Explanation:

Filtering: We filter the DataFrame to include only rows where the block is not null.

Grouping: We then group by our block column to calculate:

The minimum ID (First_ID)

The maximum ID (Last_ID)

The average of the ages (avg_age), providing the desired results.

Final Output

The final DataFrame (df3) will provide you with the first and last ID of each block and their corresponding average age:

First_IDLast_IDAvg_Age2350.07940.0Conclusion

This approach effectively allows you to calculate average values for blocks of numbers separated by nulls in a PySpark DataFrame. Utilizing window functions and conditional column operations, you can manage complex data scenarios, yielding meaningful insights without losing significant portions of your dataset to null values.

With this method, you now have a robust toolset for managing missing data in your analyses.

Happy Coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]