Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть OpenCV Python Tutorial For Beginners | Draw Shapes in Image Using Opencv | Al In One Code

  • AIOC all in one code
  • 2020-06-05
  • 132
OpenCV Python Tutorial For Beginners | Draw Shapes in Image Using Opencv | Al In One Code
OpenCV TutorialPython (Programming Language)Python 3.6PythonPython TutorialPython courseOnline CourseOpenCVOpenCV Tutorial for BeginnersComputer VisionComputer Vision BasicsComputer Vision TutorialWindowsLinuxImage ProcessingOpenCV Python TutorialOpenCV Pythonblurring imagesLaplacianImage PyramidsGaussian PyramidContoursfindContoursdrawContoursDraw Contoursthresholdshape detectionallinonecode
  • ok logo

Скачать OpenCV Python Tutorial For Beginners | Draw Shapes in Image Using Opencv | Al In One Code бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно OpenCV Python Tutorial For Beginners | Draw Shapes in Image Using Opencv | Al In One Code или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку OpenCV Python Tutorial For Beginners | Draw Shapes in Image Using Opencv | Al In One Code бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео OpenCV Python Tutorial For Beginners | Draw Shapes in Image Using Opencv | Al In One Code

#allinonecode #opencv #python #machine-learning

Code:

SUBSCRIBE TO ALL IN ONE CODE NOW
import cv2
import numpy as np

bgr to grayscale
kernel = np.ones((5, 5), np.uint8)

img = cv2.imread('lena.png')
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
canny = cv2.Canny(img, 100, 100)
dilation = cv2.dilate(canny, kernel, iterations=1)
el = cv2.erode(img, kernel)
cv2.imshow('Main-Image', img)
cv2.imshow('Canny-Image', canny)
cv2.imshow('dilation', dilation)
cv2.imshow('erode', el)
cv2.waitKey(0)
cv2.destroyAllWindows()


all in one's Machine Learning Course using Python is designed to make you grab the concepts of Machine Learning. The Machine Learning training will provide a deep understanding of Machine Learning and its mechanism. As a Data Scientist, you will be learning the importance of Machine Learning and its implementation in Python programming language. Furthermore, you will be taught Reinforcement Learning which in turn is an important aspect of Artificial Intelligence. You will be able to automate real-life scenarios using Machine Learning Algorithms. Towards the end of the course, we will be discussing various practical use cases of Machine Learning in Python programming language to enhance your learning experience.

After completing this Machine Learning Certification Training using Python, you should be able to:
Gain insight into the 'Roles' played by a Machine Learning Engineer
Automate data analysis using python
Describe Machine Learning
Work with real-time data
Learn tools and techniques for predictive modeling
Discuss Machine Learning algorithms and their implementation
Validate Machine Learning algorithms
Explain Time Series and it’s related concepts
Gain expertise to handle business in future, living the present

Why learn Machine Learning with Python?

Data Science is a set of techniques that enable computers to learn the desired behavior from data without explicitly being programmed. It employs techniques and theories drawn from many fields within the broad areas of mathematics, statistics, information science, and computer science. This course exposes you to different classes of machine learning algorithms like supervised, unsupervised and reinforcement algorithms. This course imparts you the necessary skills like data pre-processing, dimensional reduction, model evaluation and also exposes you to different machine learning algorithms like regression, clustering, decision trees, random forest, Naive Bayes and Q-Learning.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]