Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Efficiently Combine Two Large Pandas Dataframes by Datetime

  • vlogize
  • 2025-05-28
  • 2
Efficiently Combine Two Large Pandas Dataframes by Datetime
How to efficiently combine two large Pandas dataframes by datetimepythonpython 3.xpandasdataframe
  • ok logo

Скачать Efficiently Combine Two Large Pandas Dataframes by Datetime бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Efficiently Combine Two Large Pandas Dataframes by Datetime или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Efficiently Combine Two Large Pandas Dataframes by Datetime бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Efficiently Combine Two Large Pandas Dataframes by Datetime

Learn how to merge large Pandas dataframes based on datetime, optimizing performance and memory usage with the `pd.merge_asof` function.
---
This video is based on the question https://stackoverflow.com/q/66434101/ asked by the user 'RogerRoger' ( https://stackoverflow.com/u/15311937/ ) and on the answer https://stackoverflow.com/a/66434301/ provided by the user 'SultanOrazbayev' ( https://stackoverflow.com/u/10693596/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to efficiently combine two large Pandas dataframes by datetime

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Efficiently Combine Two Large Pandas Dataframes by Datetime

Handling large datasets can be daunting, especially for those new to data analysis with Python. One common problem that analysts face is merging large dataframes, particularly based on datetime indices. In this guide, we'll explore an efficient way to merge two sizeable Pandas dataframes by datetime, ensuring that we maintain performance and memory stability.

The Problem

Imagine you have two massive dataframes that you need to work with:

Dataframe 1:

Consists of 250 million rows of data

Has a datetime index

Contains columns with motion sensor values

Dataframe 2:

Contains 50 million rows of data

Also has a datetime index

Includes columns for easting and northings

Your goal is to add the easting and northings from Dataframe 2 to Dataframe 1 based on the closest datetime values. However, traditional methods like df.index.get_loc or df.interpolate take an impractically long time to process and often lead to memory instability, especially when dealing with such large datasets. So, how can you accomplish this task without iterating through the dataframes?

A Solution: Using pd.merge_asof

One of the most effective ways to merge two dataframes based on datetime indices is to utilize the pd.merge_asof function offered by Pandas. This function performs a merge by searching for the nearest key rather than needing an exact match, which is perfect for our needs when dealing with datetime data. Let’s break it down step by step.

Step 1: Prepare Your Dataframes

Before merging, ensure that both dataframes are sorted by the datetime index. If they are not sorted, pd.merge_asof will not function correctly.

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Perform the Merge

Next, use pd.merge_asof to merge the two dataframes based on the datetime indices:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Review and Use Your Merged Data

After executing the merge, review your new dataframe to ensure the easting and northings have been successfully added to Dataframe 1:

[[See Video to Reveal this Text or Code Snippet]]

Benefits of Using pd.merge_asof

Efficiency: The pd.merge_asof function is designed to handle large data much more efficiently than iterative methods.

Memory Management: By avoiding complex iterations, the processing strain is significantly reduced, resulting in better memory stability.

Flexibility: This method allows you to merge on the closest datetime values, which is crucial for many real-world applications where data may not always perfectly align.

Conclusion

Merging large Pandas dataframes based on datetime doesn't have to be a cumbersome task filled with inefficiencies. By leveraging the pd.merge_asof function, you can significantly improve the speed and reliability of your data operations. This efficient approach will come in handy, especially as the size of your datasets continues to grow. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]