Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Speed Up Your DataFrame Processing in Python: Efficiently Aggregate Values with Pandas

  • vlogize
  • 2025-05-26
  • 0
Speed Up Your DataFrame Processing in Python: Efficiently Aggregate Values with Pandas
How to speed up for loop subsetting a DataFrame by a given value in a column and applying a formulapythonpandasdataframepandas groupby
  • ok logo

Скачать Speed Up Your DataFrame Processing in Python: Efficiently Aggregate Values with Pandas бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Speed Up Your DataFrame Processing in Python: Efficiently Aggregate Values with Pandas или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Speed Up Your DataFrame Processing in Python: Efficiently Aggregate Values with Pandas бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Speed Up Your DataFrame Processing in Python: Efficiently Aggregate Values with Pandas

Discover how to optimize your for loop in Python to efficiently calculate aggregated values in a Pandas DataFrame with a simple step-by-step guide.
---
This video is based on the question https://stackoverflow.com/q/67177129/ asked by the user 'Philip09' ( https://stackoverflow.com/u/13397545/ ) and on the answer https://stackoverflow.com/a/67178850/ provided by the user 'Eric Truett' ( https://stackoverflow.com/u/515663/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to speed up for loop subsetting a DataFrame by a given value in a column and applying a formula in Python

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Speed Up Your DataFrame Processing in Python: Efficiently Aggregate Values with Pandas

When working with large datasets in Python, particularly when using the Pandas library, efficiency becomes paramount. This is especially true when it involves looping through DataFrames to calculate aggregated values based on certain conditions. In this guide, we'll explore how to optimize a for loop that subsets a DataFrame by a specific column and applies a formula.

The Problem at Hand

Imagine you have a DataFrame named flows containing information about origins, destinations, salaries, and distances. Your goal is to compute a metric (let's call it alpha) based on the DestSal and Dist columns for each unique OrigCodeNew. Here's a simplified version of the processing you're currently doing:

[[See Video to Reveal this Text or Code Snippet]]

While this code works as intended, it can be quite inefficient, especially with larger datasets.

A more efficient approach using Pandas

Instead of using a for loop with multiple subsetting operations, we can leverage the power of Pandas groupby and transform to perform the same calculations more efficiently. Here’s how you can do that:

Step-by-Step Refactoring

1. Grouping the Data:
The groupby function in Pandas allows you to group the DataFrame by OrigCodeNew.

2. Applying the Formula:
You can then use the transform function to apply your custom calculation directly within each group, which will eliminate the need for an explicit loop.

Here's how the refactored code looks:

[[See Video to Reveal this Text or Code Snippet]]

Explanation of the Code

Grouping: flows.groupby('OrigCodeNew') creates groups separated by unique values in the OrigCodeNew column.

Transformation: The transform function allows you to apply a function across each of the groups, returning a DataFrame with the same shape as the input:

Here, we calculate 1 / (sum(x['DestSal'] ** gamma * x['Dist'] ** beta)) for each group.

Final Output Preparation

After computing the values, you’ll need to prepare the final output. The result can be neatly organized into another DataFrame like this:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Using groupby and transform in Pandas significantly reduces the complexity and execution time of your calculations compared to nested loops. This not only makes your code cleaner and more readable but also enhances performance when scaling to larger datasets.

Now that you have an efficient way to compute your desired metric, feel free to implement this in your projects, and notice how much faster your calculations become!

Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]