Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Achieving One Consumer Thread per Kafka Topic Partition with Spring Kafka 2.5.8

  • vlogize
  • 2025-10-10
  • 0
Achieving One Consumer Thread per Kafka Topic Partition with Spring Kafka 2.5.8
Achieving one consumer thread per kafka topic partition with spring kafka 2.5.8 releasejavaspringmultithreadingapache kafkaspring kafka
  • ok logo

Скачать Achieving One Consumer Thread per Kafka Topic Partition with Spring Kafka 2.5.8 бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Achieving One Consumer Thread per Kafka Topic Partition with Spring Kafka 2.5.8 или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Achieving One Consumer Thread per Kafka Topic Partition with Spring Kafka 2.5.8 бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Achieving One Consumer Thread per Kafka Topic Partition with Spring Kafka 2.5.8

Learn how to configure one consumer thread per partition in Apache Kafka with Spring Kafka 2.5.8, optimizing your application performance on Kubernetes.
---
This video is based on the question https://stackoverflow.com/q/68314515/ asked by the user 'Rax' ( https://stackoverflow.com/u/2795668/ ) and on the answer https://stackoverflow.com/a/68317453/ provided by the user 'Gary Russell' ( https://stackoverflow.com/u/1240763/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Achieving one consumer thread per kafka topic partition with spring kafka 2.5.8 release

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Achieving One Consumer Thread per Kafka Topic Partition with Spring Kafka 2.5.8

Apache Kafka is a powerful tool for data streaming, but optimizing its performance can sometimes be a challenge. One common requirement in Kafka consumer configurations is to have one consumer thread per partition. This setup ensures that each partition's messages are processed independently without any overlap.

In this guide, we will address how to achieve one consumer thread per Kafka topic partition using Spring Kafka 2.5.8, particularly when running applications in a Kubernetes environment with auto-scaling capabilities.

The Problem: Consumer Thread Configuration

When working with Kafka consumers, the fundamental balance between compute resources and Kafka topic partitions becomes crucial. The relationship can be expressed as:

Number of Consumer Threads on a Compute × Number of Computes = Number of Partitions for the Topic

Traditionally, managing this relationship has required manual adjustments as the number of compute nodes changes.

Now, with the advent of Kubernetes, auto-scaling provides an opportunity to scale up or down dynamically. In such cases, if we set a maximum and minimum pod count, for example, 4, it becomes essential to maintain:

4 × Number of Consumer Threads = Number of Partitions for the Topic

The challenge lies in effectively configuring the number of consumer threads for your Kafka consumer to adapt to these changes.

The Solution: Configuring Consumer Threads in Spring Kafka

To achieve this setup in Spring Kafka, you will primarily manipulate the concurrency setting, which determines the number of concurrent consumers that a listener container can handle.

Step 1: Using ConcurrentKafkaListenerContainerFactory

The first method to configure consumer threads is through the ConcurrentKafkaListenerContainerFactory. Here's how:

Create a Kafka Listener Container Factory in your Spring configuration:

[[See Video to Reveal this Text or Code Snippet]]

Determinining Concurrency:
You can calculate the required concurrency based on your partitions and compute resources. Make sure your Kafka consumers are aware of these settings to match your topic's partitions.

Step 2: Setting Concurrency at the Listener Level

An alternative way to manage concurrency is to set it directly at the listener level using the @ KafkaListener annotation. This can be done as follows:

[[See Video to Reveal this Text or Code Snippet]]

Important Considerations

Dynamic Changes: If you're adjusting the concurrency at runtime, remember that changes won't take effect immediately. To apply the new settings, you must call stop() and start() on the container.

Monitoring Adjustments: Regularly monitor your Kafka consumer metrics to ensure the configuration meets performance expectations, especially under varying load conditions.

Conclusion

Setting up one consumer thread per Kafka topic partition can significantly enhance your application’s efficiency and performance, particularly in dynamic environments like Kubernetes. By configuring the ConcurrentKafkaListenerContainerFactory or using the @ KafkaListener annotation, you can achieve the desired consumer setup while maintaining flexibility.

As always, keep adjusting and monitoring your consumer configurations to align with your application’s scalability and throughput requirements. With these tools and strategies in place, you’ll be well on your way to optimizing your Spring Kafka application.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]