Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Iterating over a Multidimensional Numpy Array: Solving the Problem of Skipped Rows

  • vlogize
  • 2025-10-08
  • 0
Iterating over a Multidimensional Numpy Array: Solving the Problem of Skipped Rows
iterating over multidimensional numpy array and skipping rowspythonnumpyfor loop
  • ok logo

Скачать Iterating over a Multidimensional Numpy Array: Solving the Problem of Skipped Rows бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Iterating over a Multidimensional Numpy Array: Solving the Problem of Skipped Rows или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Iterating over a Multidimensional Numpy Array: Solving the Problem of Skipped Rows бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Iterating over a Multidimensional Numpy Array: Solving the Problem of Skipped Rows

Learn how to effectively iterate over a multidimensional Numpy array in Python without missing any rows, while solving a common coding problem. Find solutions and tips here!
---
This video is based on the question https://stackoverflow.com/q/64674430/ asked by the user 'MarquisMark' ( https://stackoverflow.com/u/13125661/ ) and on the answer https://stackoverflow.com/a/64674760/ provided by the user 'Santosh kumar' ( https://stackoverflow.com/u/14475143/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: iterating over multidimensional numpy array and skipping rows

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Iterating over a Multidimensional Numpy Array: Solving the Problem of Skipped Rows

When tackling coding challenges, especially in Python, you might encounter issues that can stump even experienced developers. One common issue arises while iterating over a multidimensional Numpy array—specifically, the problem of skipping certain rows during the iteration. This guide will walk through the solution by providing clear steps and explanations that will help you avoid these pitfalls in the future.

The Problem

The scenario involves a 20x20 grid in which we need to find the largest product of four adjacent numbers. As part of testing the solution, the code is designed to grab four adjacent numbers horizontally, from left to right. Consider the following example of a multidimensional Numpy array:

[[See Video to Reveal this Text or Code Snippet]]

The code executes a loop to populate a checklist with four-number combinations from each row. However, results indicate that only the last row was considered. This leads us to the question: Why are the first two rows being skipped?

Understanding the Issue

The core of the problem lies in the placement of the checklist variable within the loop. Here’s the original snippet:

[[See Video to Reveal this Text or Code Snippet]]

Key Reason for the Skipped Rows

Variable Scope: The checklist variable is declared inside the for loop. This means that in every iteration:

A new checklist is created as an empty list.

Consequently, only the last row gets populated and retained in the final checklist.

Solution: Correcting the Code

To solve this issue and ensure all rows are processed correctly, the checklist variable should be declared outside of the for loop. Here’s how you can modify the code:

[[See Video to Reveal this Text or Code Snippet]]

Breakdown of the Solution

Move the Variable Declaration: Place checklist before the loop starts. This allows it to retain data throughout all iterations.

Iterate Through Each Row: The loop works through each row without resetting checklist every time.

Use of Slicing: The while loop continues to extract segments of four adjacent numbers as you increment m and n.

Expected Output

After making this change, executing the corrected code will yield a checklist that contains segments from all rows:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Understanding how variable scope works in loops is crucial for effective coding. By moving the declaration of checklist outside of the loop, you can ensure that all rows are captured in your iterations, not just the last one. This simple adjustment can save you time and help avoid confusion when debugging your code.

Feel free to apply this approach in your future coding endeavors, especially when working with Numpy arrays! Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]