Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Implementing Animated Plots for the Collatz Conjecture: Your Guide to Smooth Animation

  • vlogize
  • 2025-10-11
  • 0
Implementing Animated Plots for the Collatz Conjecture: Your Guide to Smooth Animation
Thoughts and question when implementing animation plot of Collatz Conjecture (3X+1)pythonmatplotlibanimation
  • ok logo

Скачать Implementing Animated Plots for the Collatz Conjecture: Your Guide to Smooth Animation бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Implementing Animated Plots for the Collatz Conjecture: Your Guide to Smooth Animation или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Implementing Animated Plots for the Collatz Conjecture: Your Guide to Smooth Animation бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Implementing Animated Plots for the Collatz Conjecture: Your Guide to Smooth Animation

Discover how to create animated plots for the `Collatz Conjecture` using Python's Matplotlib. Learn why initializing your data structure is crucial and how to display values on your plot.
---
This video is based on the question https://stackoverflow.com/q/68753446/ asked by the user 'Maggie' ( https://stackoverflow.com/u/15499213/ ) and on the answer https://stackoverflow.com/a/68753891/ provided by the user 'phuycke' ( https://stackoverflow.com/u/15706051/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Thoughts and question when implementing animation plot of Collatz Conjecture (3X+ 1)

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Unraveling the Collatz Conjecture: How to Animate and Visualize It

The Collatz Conjecture is a fascinating algorithm that captures the imagination of mathematicians and enthusiasts alike. It states that if you take any positive integer, halve it if it's even, or triple it and add one if it's odd, you will eventually reach the number one. This simple premise provides a great opportunity not only to explore algorithmic programming but also to visually represent the convergence through animations.

While working on a replication of the mesmerizing animation from Veritasium's video, many developers face challenges with implementing the Collatz function and animating its behavior. In this article, we’ll tackle commonly asked questions regarding animation plots of the Collatz Conjecture and provide a guide to successfully create these animations using Python and Matplotlib.

The Problem: Understanding Your Questions

Your inquiries mainly revolve around two key issues:

Why can't you start with an empty list when creating the y data for your animation?

What causes the infinite loop when using a while statement?

By addressing these questions, we will improve the clarity of the implementation and ensure that your animation functions perfectly!

Why You Can't Start with an Empty List for y

The primary reason you cannot start with an empty list for the variable y is that the Collatz function requires a defined starting point. Starting from an empty list leaves no initial reference value, which leads to runtime errors, as there's nothing to work with. Instead, you should initialize y with a starting number—this can be passed as an argument to your function.

Solution

Initialize y using an initial starting number:

[[See Video to Reveal this Text or Code Snippet]]

If you're interested in using random starting points, you can substitute:

[[See Video to Reveal this Text or Code Snippet]]

The Infinite Loop Issue: Addressing the While Statement

The infinite loop occurs because the condition in your while loop is improperly established. It's crucial that you check the most recently added value of y instead of looping indefinitely with the current index.

Solution

Update the while loop condition to check whether the last value in the list y is greater than 1:

[[See Video to Reveal this Text or Code Snippet]]

Using y[-1] will reference the last element in your list and ensure that the loop continues until it reaches the stopping point.

Overhaul of the Collatz Function

Here’s how your code can be revamped to ensure proper function and animation:

[[See Video to Reveal this Text or Code Snippet]]

Adding Data Labels

To enhance the plot, you can illustrate the y values on top of each point in your animation. To achieve this, you can utilize the plt.text function within the update function. Here’s how to implement it:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

With the understanding of why proper initialization is essential and how to tweak your loops correctly, you can now successfully animate the Collatz Conjecture. By implementing a clear structure and ensuring your code logic is sound, your animation will not only run smoothly, but it will also provide a visual exploration into the intriguing world of mathematical conjectures.

Now go ahead, try it out, and let the numbers bounce to life!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]