Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Jee Mains PYQ based on Application of Gauss Law

  • Quality Education Classes
  • 2025-07-04
  • 30
Jee Mains PYQ based on Application of Gauss Law
jee mains pyqjee advance pyqjee one shotneet one shotneet physicsphysics electrostaticsphysics wallah
  • ok logo

Скачать Jee Mains PYQ based on Application of Gauss Law бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Jee Mains PYQ based on Application of Gauss Law или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Jee Mains PYQ based on Application of Gauss Law бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Jee Mains PYQ based on Application of Gauss Law

Gauss's Law is a powerful tool for calculating electric fields, particularly in situations with high symmetry like those involving spheres, cylinders, or infinite planes. It simplifies these calculations by relating the electric flux through a closed surface to the enclosed electric charge. 

Here's a breakdown of Gauss's Law and its applications:

1. What is Gauss's Law?

Gauss's Law states that the electric flux through any closed surface is proportional to the enclosed electric charge. 

Mathematically, it's expressed as: ∮ E ⋅ dA = Q_enclosed / ε₀, where: 

E: is the electric field. 

dA is an infinitesimal area element on the closed surface. 

Q_enclosed is the net electric charge enclosed by the surface. 

ε₀ is the permittivity of free space. 

The closed surface used for the calculation is called a Gaussian surface. 

2. Why is it useful?

Gauss's Law is particularly helpful when dealing with charge distributions that exhibit symmetry (spherical, cylindrical, planar). 

It allows for the calculation of electric fields without needing to perform complex integrations, which can be very tedious for certain charge distributions. 

Instead of calculating the flux through a complex surface, a Gaussian surface is chosen where the electric field is constant and parallel to the surface normal, simplifying the calculation. 

3. Applications of Gauss's Law:

Electric field due to a uniformly charged sphere:

Gauss's Law can be used to find the electric field both inside and outside a uniformly charged sphere. 

Electric field due to an infinite line of charge:

A cylindrical Gaussian surface is chosen to determine the electric field around a uniformly charged wire. 

Electric field due to an infinite plane of charge:

A cylindrical Gaussian surface, with one end cap parallel to the charged plane, is used to determine the electric field. 

Electric field inside a hollow charged sphere:

By using a spherical Gaussian surface inside the hollow sphere, it can be shown that the electric field is zero inside. 

Electrostatic shielding:

Gauss's Law is also used to understand electrostatic shielding, where a conductor shields its interior from external electric fields. 

Real-world applications:

Gauss's Law is used in designing particle accelerators and medical equipment like radiation therapy machines, where precise control of electric fields is crucial. 
 #Electrostatics​ #PhysicsClass12​ #Class12Physics​ #JEEPhysics​ #NEETPhysics​ #CoulombsLaw​ #ElectricField​ #GaussLaw​ #PhysicsShorts​ #BoardExam2025​ #PhysicsRevision​ #JEE2025​ #NEET2025​ #ElectrostaticPotential​ #ScienceExplained​ #PhysicsForBeginners​ #CBSEPhysics​ #NCERTPhysics​ #OneShotLecture​ #ViralPhysicsVideo​

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]