Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Your First ML model in Production Considerations & Examples

  • Toronto Machine Learning Society (TMLS)
  • 2021-05-07
  • 476
Your First ML model in Production Considerations & Examples
machine learningdata sciencemlopsmlartificial intelligencemlops communitymachine learning engineerml engineeringmachine learning tutorialdata engineersdata engineeringdata engineerYour First ML Model in Production - Considerations & ExamplesSabina Stanescuml modelData Science workdata scientistconsiderationdevopsml model in productionaisabina stanescu ml modelML model in production considerationsyour first ML modelsabina stanescu ml
  • ok logo

Скачать Your First ML model in Production Considerations & Examples бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Your First ML model in Production Considerations & Examples или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Your First ML model in Production Considerations & Examples бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Your First ML model in Production Considerations & Examples

💻 Abstract:
As Data Science professionals, we want to do innovative, impactful work. Thus, our work on data munging and building machine learning models cannot happen in isolation from business objectives and the infrastructure of our organizations. In this talk, I will explore ways to identify impactful, executable Data Science work, and how to take this work to production. I will discuss what it means to have a model in production, including ways to score the model in real-time versus batch. I will discuss sample architectures required to make model scores available for your application, such as through an API or database. Finally, I will tie everything together with some of the processes and frameworks that allow for iteration and testing to complete the full life cycle of model deployment. I will provide a real example of taking an ML project all the way from data capture to real-time scoring in production.

🔊 Speaker bio:
Sabina Stanescu
7+ years working as a Data Science professional.
Currently manages a team of Data Scientists for consulting engagements with customers across use-cases such as Credit Risk, Marketing, and Engineering Process Design.
Previously worked at Points as Lead Data Scientist in Marketing and as Lead Product Manager for Machine Learning, integrating machine learning into Points' products.
MSc in Ecology, University of Guelph, with a focus on data analysis and modeling in ROI

If you enjoyed this talk, visit us at https://mlopsworld.com/ and come participate in our next gathering! 💼

Would you like to receive email summaries of these talks? Join our newsletter FREE here: http://bit.ly/MLOps_Summaries 📧

Timestamps:

0:00 Intro
0:36 Getting to know Sabina Stanescu
1:40 Taking the machine learning model and how you think about creating it.
3:15 Figuring out if it's the right time to build the machine learning model for your system.
4:48 Example on how to think about integrating your KPIs with model objectives.
10:27 Building and deploying that first pipeline.
11:26 Simple batch example.
13:37 Going from batch to real-time.
15:39 Things they need to think about, aside from the tooling are the business needs.
17:58 Prototyping and subject matter
18:34 Managing the pipeline with the Git lab pipeline and CI CD tools
24:20 How do you deal with engineering new features, launch and iterate, and add these new features to the pipeline.
28:57 A/B testing
29:54 Closing the feedback loop.

❓ Q&A Section ❓

32:20 What are your thoughts on ML run?
33:22 Have you used cube flow? Thoughts?
33:38 Were the KPIs tested on a preset or from recent history?
36:04 How do you make sure that you have similar sets for A and B and do you switch them back and forth?
37:31 Does the model get tested by the builder?
38:30 For A/B testing, do you also use a control group to measure incrementality?
41:25 Can you name a few tools that you would use today to run the same model in production?
42:59 How big is your model in production versus prototype?
44:15 How would you encourage your data science team to use traditional SDLC best practices?

45:43 Closing remarks

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]