Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Combining DataFrames in R: A Step-by-Step Guide to Merging Data with Common Rows

  • vlogize
  • 2025-10-10
  • 0
Combining DataFrames in R: A Step-by-Step Guide to Merging Data with Common Rows
Map two different data-frame with common row and combining them together
  • ok logo

Скачать Combining DataFrames in R: A Step-by-Step Guide to Merging Data with Common Rows бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Combining DataFrames in R: A Step-by-Step Guide to Merging Data with Common Rows или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Combining DataFrames in R: A Step-by-Step Guide to Merging Data with Common Rows бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Combining DataFrames in R: A Step-by-Step Guide to Merging Data with Common Rows

Learn how to effectively combine two R dataFrames based on a common column. This guide provides a clear, in-depth method using the `data.table` approach, ensuring you get a perfectly merged output.
---
This video is based on the question https://stackoverflow.com/q/68360986/ asked by the user 'PesKchan' ( https://stackoverflow.com/u/14010653/ ) and on the answer https://stackoverflow.com/a/68361342/ provided by the user 'Wimpel' ( https://stackoverflow.com/u/6356278/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Map two different data-frame with common row and combining them together

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Combine Different DataFrames in R Based on Common Rows

In the world of data analysis, it's common to encounter situations where you need to combine multiple datasets to gain deeper insights. Whether you are preparing data for analysis or simply need to consolidate information, mastering the art of combining DataFrames is essential. In this guide, we will tackle a specific problem: how to map two different DataFrames in R based on a common column, and then merge them into a final DataFrame that presents the data clearly and succinctly.

The Problem

Imagine you have a primary DataFrame (let's call it DataFrame A) containing gene identifiers, as well as two other DataFrames that provide expression and region information corresponding to these genes. The goal is to merge these datasets so that you have a comprehensive view that includes the expression and region log2FoldChange values side by side.

Here's the structure of the available DataFrames:

DataFrame A: Contains a list of gene identifiers.

Expression DataFrame: Includes genes and their respective log2FoldChange values.

Region DataFrame: Also includes genes and their log2FoldChange values.

The expected output should look like this:

[[See Video to Reveal this Text or Code Snippet]]

The Solution

To achieve this, we will leverage the data.table package in R, which is excellent for fast data manipulation. The following steps outline a clear approach to combine the DataFrames.

Step 1: Install and Load Required Libraries

First, ensure you have the data.table and tibble packages installed. If they are not already installed, you can do so using the following command:

[[See Video to Reveal this Text or Code Snippet]]

Once installed, load the packages into your R session:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Create the DataFrames

Next, create your DataFrames using fread to read in the data. Here’s how to set them up:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Merging the DataFrames

To combine the three DataFrames, we will follow a systematic approach:

Put DataFrames into a Named List: This makes it easier to loop through them.

Set Keys for Join: We will set the 'gene' column as the key for our joins.

Merge the DataFrames: Using Reduce function, we will merge them based on the common key.

Here’s the complete code for merging:

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Inspect the Output

After executing the merge, you can inspect the combined DataFrame:

[[See Video to Reveal this Text or Code Snippet]]

This should give you a final output similar to:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Combining multiple DataFrames in R using the data.table package is not only efficient but also quite straightforward once you understand the steps involved. By following the systematic approach outlined in this guide, you can effectively combine your data sets based on common identifiers, facilitating better analysis and insights.

For more data manipulation tips, stay tuned for our upcoming posts!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]