Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Count Unique Values in Rows of a Pandas DataFrame?

  • vlogize
  • 2025-05-24
  • 0
How to Count Unique Values in Rows of a Pandas DataFrame?
For each value in a column how to count the number of unique values in its row?pythonpandasdataframe
  • ok logo

Скачать How to Count Unique Values in Rows of a Pandas DataFrame? бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Count Unique Values in Rows of a Pandas DataFrame? или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Count Unique Values in Rows of a Pandas DataFrame? бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Count Unique Values in Rows of a Pandas DataFrame?

Learn how to efficiently count unique values in each row of a Pandas DataFrame using Python. This guide provides clear steps and code examples to achieve your desired results.
---
This video is based on the question https://stackoverflow.com/q/71397913/ asked by the user 'Code_Curious' ( https://stackoverflow.com/u/18410091/ ) and on the answer https://stackoverflow.com/a/71398279/ provided by the user 'timgeb' ( https://stackoverflow.com/u/3620003/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: For each value in a column, how to count the number of unique values in its row?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Count Unique Values in Rows of a Pandas DataFrame?

When working with data in Python, especially in data analysis or machine learning projects, you may encounter situations where you need to count the number of unique values associated with certain identifiers. This is particularly true when handling a DataFrame using the Pandas library.

In this post, we will explore how to count the unique names associated with each ID in a DataFrame. We'll take a closer look at a sample DataFrame and provide steps to derive the desired output.

Problem Overview

Suppose you have a DataFrame structured as follows:

IDperson_1person_2ID_001AaronBenID_003KateBenID_001AaronLouID_005LeeBenID_006AaronCassieID_001TimBenID_003BenMalOur goal is to count the number of unique names associated with each unique ID. The desired output would look something like this:

IDCountID_0014ID_0033ID_0052ID_0062Understanding the Solution

To achieve the desired counting of unique values, we'll make use of two key Pandas functions: melt() and groupby(). Here’s a step-by-step breakdown of the solution:

Step 1: Melt the DataFrame

The melt() function in Pandas is a powerful tool that transforms our original DataFrame from a wide format to a long format. By specifying the ID as the identifier variable, we can easily reshape the DataFrame so that all names (from person_1 and person_2) are in a single column. This makes it easier for us to count unique values.

Here’s the code snippet for this step:

[[See Video to Reveal this Text or Code Snippet]]

After melting, our DataFrame will look like this:

IDvariablevalueID_001person_1AaronID_001person_2BenID_001person_1AaronID_001person_2LouID_003person_1KateID_003person_2Ben.........Step 2: Group By ID and Count Unique Values

Next, we will group the melted DataFrame by the 'ID' column and then count the number of unique names in the 'value' column. This can be done using the groupby() and nunique() functions.

Here’s how you can do it:

[[See Video to Reveal this Text or Code Snippet]]

This will give you a Series output displaying the count of unique values for each ID.

Complete Code Example

To put it all together, here’s the complete Python code for the entire process:

[[See Video to Reveal this Text or Code Snippet]]

Alternative Method

Another method you can employ to achieve the same result is to first set the index of the DataFrame to 'ID', then use the stack() method followed by groupby() and nunique(). Here’s the code for that approach:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Counting unique values in rows of a Pandas DataFrame can be efficiently accomplished using the melt() and groupby() functions. With just a few lines of code, you can reshape your data and extract meaningful insights that are crucial for your analysis.

Now you're equipped with the knowledge to tackle similar problems in your data analysis projects. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]