Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Override Gradient Vector Calculation in Keras Optimization Algorithms

  • vlogize
  • 2025-10-09
  • 0
How to Override Gradient Vector Calculation in Keras Optimization Algorithms
  • ok logo

Скачать How to Override Gradient Vector Calculation in Keras Optimization Algorithms бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Override Gradient Vector Calculation in Keras Optimization Algorithms или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Override Gradient Vector Calculation in Keras Optimization Algorithms бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Override Gradient Vector Calculation in Keras Optimization Algorithms

Learn how to customize the gradient calculation method for Adam and SGD optimizers in Keras using the `jacobian` method. Optimize your deep learning models with greater flexibility and control.
---
This video is based on the question https://stackoverflow.com/q/64718134/ asked by the user 'jeffery_the_wind' ( https://stackoverflow.com/u/959306/ ) and on the answer https://stackoverflow.com/a/64736666/ provided by the user 'xdurch0' ( https://stackoverflow.com/u/9393102/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to override gradient vector calculation method for optimization algos in Keras, Tensorflow?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Customizing Gradient Vector Calculations in Keras

When working with deep learning models in Keras, especially when utilizing optimizers like Adam or SGD, you may face a need to modify the gradient vector calculation method for optimization. The default method averages the loss over the data points in the batch and derives the gradient vector from this average. However, at times, you may want to perform custom calculations on the gradients rather than simply averaging them.

In this guide, we will explore how to leverage TensorFlow’s GradientTape and its jacobian method to achieve this.

Understanding the Problem

The conventional approach to gradient calculation looks something like this:

The loss is computed by averaging over the batch.

Gradients are then computed from this averaged loss value.

This results in a single gradient per variable for the entire batch.

While this method works adequately in many scenarios, it may not always be sufficient. There may be cases where you would like to compute individual gradients for each data point and then apply your custom logic before finalizing the updates to the model parameters.

To implement such modifications, you may want to access the jacobian method from the TensorFlow library.

Solution Explanation

The main solution involves overriding the train_step method within your custom model class in Keras. Let’s break down the steps:

1. Defining a Custom Model

You’ll need a custom class that inherits from keras.Model. The modified train_step method includes the following steps:

Data Unpacking: Begin by unpacking the inputs and targets from the data.

Forward Pass: Use TensorFlow’s GradientTape to track operations for automatic differentiation.

Here’s a simple implementation:

[[See Video to Reveal this Text or Code Snippet]]

2. Computing Individual Gradients with Jacobian

Instead of using tape.gradient(), you will use tape.jacobian(). Here’s how:

[[See Video to Reveal this Text or Code Snippet]]

3. Custom Gradient Manipulation

With the gradients calculated for each data point, you can now manipulate them as per your specific requirements. For example:

[[See Video to Reveal this Text or Code Snippet]]

4. Updating Weights and Metrics

Finally, update the weights using your custom gradients and ensure the metrics are updated accordingly:

[[See Video to Reveal this Text or Code Snippet]]

Important Considerations

Loss Shape: Ensure that your loss function returns a tensor of shape (batch_size,) instead of a scalar. This is crucial because using the jacobian requires a loss per data point.

Performance: Keep in mind that using jacobian can be computationally expensive as it may increase the time complexity to O(batch_size). However, TensorFlow allows some parallel computation which may mitigate the slowdown.

Conclusion

By utilizing the jacobian method from TensorFlow’s GradientTape, you can effectively customize how gradients are calculated for Keras optimization algorithms. This approach not only provides flexibility but also enhances your ability to experiment with different optimization strategies in your deep learning models.

Feel free to implement these changes within your training loops, and let us know how it impacts your model performance!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]