Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть First machine learning protection against side-channel attacks for post-silicon security patch

  • Green IC group (www.green-ic.org)
  • 2023-02-20
  • 141
First machine learning protection against side-channel attacks for post-silicon security patch
siliconchipultra-low powergreeninnovationtechnologybreakthrough#hardware security#side-channel attacks#machine learning#Internet of Things#silicon chip#semiconductors#ultra-low power#power analysis attacks#secure chips#secure silicon systems#encryption#artificial intelligence#hardware patching#post-silicon patching
  • ok logo

Скачать First machine learning protection against side-channel attacks for post-silicon security patch бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно First machine learning protection against side-channel attacks for post-silicon security patch или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку First machine learning protection against side-channel attacks for post-silicon security patch бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео First machine learning protection against side-channel attacks for post-silicon security patch

The first side-channel attack counteraction via machine learning for post-silicon HW security patching is here presented. This is another scientific/technical advance from the Green IC group led by Prof. Massimo Alioto, insights into our research and its impact in the world.

In this work, machine learning-based side-channel attack counteraction is presented for security upgradeability via retraining, upon vulnerability discovery after deployment. Based on stdcell design, direct compensation of information-leaking power contributions reduces the power overhead over conventional indiscriminate compensation of total power fluctuations. A 40nm chip demonstrates design reuse across crypto algorithms, patching against a new attack to PRESENT, and AES protection under more than 1.2B traces.

In this work, a design-adaptive counteraction approach against side-channel attacks is introduced to enable post-silicon upgrade-ability and security fixes over time (“hardware patch”), reuse across ciphers under single- and multi-standard encryption, and targeted compensation of information-sensitive power contributions for low power overhead. The latter are actively compensated by a lightweight machine learning power model and a power compensator, whose weight updates allow post-silicon improvements and large-scale deployment of security fixes throughout the device lifespan. A 40nm testchip demonstrates adaptability across ciphers and their implementations, while retaining conventional standard cell-based design for easy adoption, system integration and in-situ protection. Hardware patching of new vulnerabilities is demonstrated by introducing and then counteracting a newly proposed attack to PRESENT via weight update.

RELATED LINKS
https://www.green-ic.org for pre-print article download, die photo gallery and much more
https://ieeexplore.ieee.org/document/...

GREEN IC GROUP LINKS TO EXPLORE FURTHER (WWW, Instagram, Facebook, Twitter, YouTube)
https://www.green-ic.org/
  / greenicgroup  
  / green.ic.group  
  / green_ic_org  
  / massimo-alioto  
   / @greenicgroupwwwgreen-icorg  

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]