Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть George Michailidis: Statistical models for mixed frequency data in forecasting economic indicators

  • ASA Statistical Learning and Data Science
  • 2023-01-26
  • 1775
George Michailidis: Statistical models for mixed frequency data in forecasting economic indicators
Statistical LearningData ScienceMachine LearningAI
  • ok logo

Скачать George Michailidis: Statistical models for mixed frequency data in forecasting economic indicators бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно George Michailidis: Statistical models for mixed frequency data in forecasting economic indicators или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку George Michailidis: Statistical models for mixed frequency data in forecasting economic indicators бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео George Michailidis: Statistical models for mixed frequency data in forecasting economic indicators

Presentation slides available on SLDS Google Drive: https://drive.google.com/file/d/1MGTx...

American Statistical Association (ASA), Section on Statistical Learning and Data Science (SLDS)
January webinar: Statistical models for mixed frequency data and their applications in forecasting economic indicators

Record: January 26, 2023

Presenter: George Michailidis did his undergraduate training in economics at the University of Athens, Greece and his graduate training in mathematics at UCLA. He is a Fellow of ASA, IMS and ISI. He served as Editor-in-Chief of the Electronic Journal of Statistics and as Associate Editor of many statistical journals including JASA,JCGS, Technometrics, J of Nonparametric Statistics. His research interests are in high-dimensional statistics, change point analysis, large scale networks, machine learning, stochastic control and their applications to biomedical, engineering and financial data.

Abstract: In this talk, we discuss the problem of modeling and analysis of time series data that evolve at different frequencies (e.g., quarterly-monthly). Initially, we focus on forecasting a single variable measured at a low frequency based on a regression model that includes past lags of the response variable and other high and low frequency predictors and their lagged valued. We first provide a brief survey of available approaches in the literature and subsequently introduce the Bayesian Nested Lasso (BNL) that leads to principled selection of the lag of the predictors, reduces the effective number of model parameters through sparsity induced by the lasso component and finally incorporates desirable decay patterns over time lags in the magnitude of the corresponding regression coefficients. Further, it is easy to obtain samples from the posterior distribution due to the closed form expressions for the conditional distributions of the model parameters. Theoretical properties of the method are established and numerical results obtained from synthetic and macroeconomic data illustrate the good performance of the proposed Bayesian framework in parameter selection and estimation, and in the key task of GDP forecasting.

Subsequently, we briefly present multivariate time series models aiming to forecast a set of low frequency variables leveraging their past lags, as well as past lags of other time series sampled at higher frequency. We discuss suitable models and illustrate their performance in forecasting tasks of key macroeconomic indicators.

For more information about or to join ASA SLDS, visit

https://community.amstat.org/slds/home
  / slds_asa  
https://www.amstat.org/

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]