Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Normalize Numeric Columns in a Data Frame with R

  • vlogize
  • 2025-04-05
  • 17
How to Normalize Numeric Columns in a Data Frame with R
Using `scale()` to normalize all numeric columns in a data.framedataframe
  • ok logo

Скачать How to Normalize Numeric Columns in a Data Frame with R бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Normalize Numeric Columns in a Data Frame with R или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Normalize Numeric Columns in a Data Frame with R бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Normalize Numeric Columns in a Data Frame with R

Learn how to effectively normalize all numeric columns in an R data.frame while keeping date columns intact. This step-by-step guide simplifies the process for you!
---
This video is based on the question https://stackoverflow.com/q/73162219/ asked by the user 'Daworn' ( https://stackoverflow.com/u/19160615/ ) and on the answer https://stackoverflow.com/a/73162277/ provided by the user 'Zheyuan Li' ( https://stackoverflow.com/u/4891738/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Using `scale()` to normalize all numeric columns in a data.frame

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Normalizing Numeric Columns in a Data Frame Using R

Data analysis often requires the normalization of numeric data to ensure that the values are on a similar scale. Normalization can significantly impact the performance of machine learning algorithms and statistical models. In this guide, we’ll walk you through the process of normalizing all numeric columns in a data.frame in R, while keeping the non-numeric columns (like dates) untouched.

The Problem: Normalizing Data in R

Imagine you have a data.frame containing various columns representing numerical values, but you want to standardize these measurements to eliminate unit differences or ranges. However, you want to keep your date column unchanged because it's not a numeric variable that requires normalization.

Here’s an example data.frame to illustrate:

[[See Video to Reveal this Text or Code Snippet]]

As shown in the example, the date column is non-numeric and should be preserved, while all numeric columns like launches, pledged, and likes need to be normalized.

The Solution: Utilizing the scale() Function

Step 1: Identify Numeric Columns

The first step in normalizing only the numeric columns is by identifying which columns in the data frame are numeric. In R, you can use the sapply() function for this task.

Here’s how you can do it:

[[See Video to Reveal this Text or Code Snippet]]

In this line of code, we apply the is.numeric function to each column of the data frame dat, which returns a logical vector (TRUE for numeric columns and FALSE for others).

Step 2: Normalize Numeric Columns

Once you have identified which columns are numeric, the next step is to apply the scale() function to those columns. The scale() function in R standardizes the data by centering it to the mean and scaling it to the standard deviation.

Here's the complete line of code to normalize the numeric columns:

[[See Video to Reveal this Text or Code Snippet]]

This line of code effectively replaces the existing numeric columns in your data frame with their normalized versions.

Final Steps: Review Your Data Frame

After executing the above commands, it's good practice to take a look at your data frame to ensure that the numeric columns have been normalized while the date column remains unchanged.

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Normalizing the numeric columns of a data frame in R is a straightforward process that can significantly improve your data analysis. By using the sapply() function to identify numeric data and the scale() function to perform normalization, you can successfully standardize your data while keeping date information intact.

Now that you have a clear understanding of how to normalize numeric columns in your data frame, you can apply this method to your own datasets confidently. Happy analyzing!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]