Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Research Seminar: "Computational Imaging" by Prof. Ulugbek Kamilov

  • SigProcessing
  • 2021-03-07
  • 528
Research Seminar: "Computational Imaging" by Prof. Ulugbek Kamilov
computational imagingdeep learninginverse problemsdenoisingresearch seminar
  • ok logo

Скачать Research Seminar: "Computational Imaging" by Prof. Ulugbek Kamilov бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Research Seminar: "Computational Imaging" by Prof. Ulugbek Kamilov или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Research Seminar: "Computational Imaging" by Prof. Ulugbek Kamilov бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Research Seminar: "Computational Imaging" by Prof. Ulugbek Kamilov

Spring 2021 SIP Seminar Series: February 17, 2021
[http://www.inspirelab.us/seminars/]

Speaker: Prof. Ulugbek Kamilov

Abstract: Computational imaging is a rapidly growing area that seeks to enhance the capabilities of imaging instruments by viewing imaging as an inverse problem. There are currently two distinct approaches for designing computational imaging methods: model-based and learning-based. Model-based methods leverage analytical signal properties and often come with theoretical guarantees and insights. Learning-based methods leverage data-driven representations for best empirical performance through training on large datasets. This talk presents Regularization by Artifact Removal (RARE), as a framework for reconciling both viewpoints by providing a learning-based extension to the classical theory. RARE uses “artifact-removing deep neural nets” as mechanisms to infuse learned prior knowledge into an inverse problem while maintaining a clear separation between the prior and physics-based acquisition model. Our results indicate that RARE can achieve state-of-the-art performance in different computational imaging tasks, while also being amenable to rigorous theoretical analysis. We will focus on the applications of RARE in biomedical imaging, including magnetic resonance and tomographic imaging.

Biography: Ulugbek S. Kamilov is Assistant Professor and Director of Computational Imaging Group (CIG) at Washington University in St. Louis. He obtained the BSc and MSc degrees in Communication Systems, and the PhD degree in Electrical Engineering from EPFL, Switzerland, in 2008, 2011, and 2015, respectively. From 2015 to 2017, he was a Research Scientist at MERL, Cambridge, MA, USA. He is a recipient of the NSF CAREER Award in 2021 and the IEEE Signal Processing Society’s 2017 Best Paper Award. His Ph.D. thesis was selected as a finalist for the EPFL Doctorate Award in 2016. He has served as an Associate Editor of IEEE Transactions on Computational Imaging (2019-present), Biological Imaging (2020-present), and on IEEE Signal Processing Society’s Computational Imaging Technical Committee (2016-present). He was a plenary speaker at iTWIST 2018, has co-organized IMA Special Workshop on Computational Imaging in 2019, and is a program co-chair for SampTA 2021 and BASP 2022.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]