Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть 2022.09.27, Alexander Clifton, Ramsey Theory for Diffsequences

  • IBS Discrete Mathematics Group
  • 2022-09-27
  • 121
2022.09.27, Alexander Clifton, Ramsey Theory for Diffsequences
Discrete Math SeminarResearch SeminarIBSAlexander CliftonRamsey TheoryDiffsequences
  • ok logo

Скачать 2022.09.27, Alexander Clifton, Ramsey Theory for Diffsequences бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно 2022.09.27, Alexander Clifton, Ramsey Theory for Diffsequences или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку 2022.09.27, Alexander Clifton, Ramsey Theory for Diffsequences бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео 2022.09.27, Alexander Clifton, Ramsey Theory for Diffsequences

Alexander Clifton, Ramsey Theory for Diffsequences
September 27 2022, Tuesday @ 4:30 PM ~ 5:30 PM
Room B332, IBS (기초과학연구원)

Speaker

Alexander Clifton
IBS Discrete Mathematics Group
https://sites.google.com/view/alexand...

Van der Waerden's theorem states that any coloring of $\mathbb{N}$ with a finite number of colors will contain arbitrarily long monochromatic arithmetic progressions. This motivates the definition of the van der Waerden number $W(r,k)$ which is the smallest $n$ such that any $r$-coloring of $\{1,2,\cdots,n\}$ guarantees the presence of a monochromatic arithmetic progression of length $k$.

It is natural to ask what other arithmetic structures exhibit van der Waerden-type results. One notion, introduced by Landman and Robertson, is that of a $D$-diffsequence, which is an increasing sequence $a_1, a_2, \cdots, a_k$ ($a_i$ is smaller than $a_{i+1}$) in which the consecutive differences $a_i-a_{i-1}$ all lie in some given set $D$. We say that $D$ is $r$-accessible if every $r$-coloring of $\mathbb{N}$ contains arbitrarily long monochromatic $D$-diffsequences. When $D$ is $r$-accessible, we define $\Delta(D,k;r)$ as the smallest $n$ such that any $r$-coloring of $\{1,2,\cdots,n\}$ guarantees the presence of a monochromatic $D$-diffsequence of length $k$.

One question of interest is to determine the possible behaviors of $\Delta$ as a function of $k$. In this talk, we will demonstrate that is possible for $\Delta(D,k;r)$ to grow faster than polynomial in $k$. We will also discuss a broad class of $D$'s which are not $2$-accessible.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]