Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Understanding ImageFolder vs. Custom Dataset in PyTorch for Image Classification

  • vlogize
  • 2025-02-25
  • 27
Understanding ImageFolder vs. Custom Dataset in PyTorch for Image Classification
PyTorch ImageFolder vs. Custom Dataset from single folderdatasetpythonpytorch
  • ok logo

Скачать Understanding ImageFolder vs. Custom Dataset in PyTorch for Image Classification бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Understanding ImageFolder vs. Custom Dataset in PyTorch for Image Classification или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Understanding ImageFolder vs. Custom Dataset in PyTorch for Image Classification бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Understanding ImageFolder vs. Custom Dataset in PyTorch for Image Classification

A comprehensive guide to using PyTorch's `ImageFolder` and creating a custom dataset when handling multi-class image classification problems. Explore the solution for organizing image data in a single folder with labels in filenames.
---
This video is based on the question https://stackoverflow.com/q/77528929/ asked by the user 'Rafael' ( https://stackoverflow.com/u/7041498/ ) and on the answer https://stackoverflow.com/a/77530485/ provided by the user 'Nicolas Gervais - Open to Work' ( https://stackoverflow.com/u/10908375/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, comments, revision history etc. For example, the original title of the Question was: PyTorch ImageFolder vs. Custom Dataset from single folder

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding ImageFolder vs. Custom Dataset in PyTorch for Image Classification

In the world of deep learning and computer vision, efficiently organizing your dataset is crucial. When working with PyTorch, a popular deep learning library, you may encounter a common scenario: all your images are stored in a single folder, and each image's label is embedded within its filename. This poses the question of how to properly structure your dataset for multi-class image classification. Are you limited to using ImageFolder, or is there a better approach?

The Problem

You have a multi-class image classification problem, and all of your images are stored in one folder. Each image's label can be found within its filename. This leads to a few important questions:

Is it a reasonable structure to keep all images in one folder with their labels in their filenames?

Why is there no built-in method in PyTorch like ImageFromOneFolder()?

Should you create a custom dataset to handle your images more effectively?

The Solution: Using a Custom Dataset

While ImageFolder is a powerful tool for organizing image datasets, it does require a specific folder structure—mainly having separate training and testing folders categorized by class labels. Fortunately, PyTorch allows you to create a custom dataset that suits your specific needs without the need for restructuring your images.

Building a Custom Dataset

Here’s a straightforward way to create a custom dataset using PyTorch that can read images from a single folder:

[[See Video to Reveal this Text or Code Snippet]]

Steps Explained

Import Necessary Libraries: The code starts by importing the required libraries: PIL for image handling, Dataset for creating the dataset, and Path for file path handling.

Class Definition: ImageFolderCustom inherits from Dataset. In its _init_ method, it initializes the image paths and transformations, and it also identifies the unique class labels.

Label Extraction: The get_label static method extracts the label from the filename, ensuring that your images can be accurately classified during training.

Image Loading: The load_image method fetches the image file using the provided index.

Dataset Length: The _len_ method returns the total number of images in the dataset.

Getting Items: The _getitem_ method loads an image and retrieves its corresponding class index, applying transformations if specified.

Transformations and Data Loading

After defining the custom dataset class, set up your data transformations and create a DataLoader:

[[See Video to Reveal this Text or Code Snippet]]

Transformations: This section defines how the images should be preprocessed before feeding them into the model. In this case, images are resized to 64x64 pixels and converted to tensors.

Data Loader: The DataLoader organizes the dataset into manageable batches for training, allowing you to shuffle the data for improved training performance.

Conclusion

In summary, while PyTorch’s ImageFolder is useful for traditionally structured datasets, creating a custom dataset allows for greater flexibility, especially in cases where images are stored in one folder with labels embedded in their filenames. By following the outlined steps, you can efficiently manage your image data and set your project up for success.

Remember, the most important thing is to adapt your approach based on your dataset’s needs—PyTorch's flexibility offers multiple ways to achieve the same goal!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]