A blockchain can be seen as consisting of several layers:
#Infrastructure (hardware)
#Networking (node discovery, information propagation and verification)
#Consensus (proof of work, proof of stake)
#Data (blocks, transactions)
#Application (smart contracts/dApps, if applicable)
1.Jiao L, Zhang F, Liu F, Yang S, Li L, Feng Z, Qu R (2019) A survey of deep learning-based object detection. IEEE Access 7:128837–128868 2.Pal S K (2018) Data science and technology: challenges, opportunities and national relevance. 14th annual convocation speech, national institute of technology, Calicut3.Pal S K, Bhoumik D, Chakraborty D B (2020) Granulated deep learning and z-numbers in motion detection and object recognition. Neural Comput Appl 32(21):16533–16548 4.Chakraborty DB, Pal S K (2021) Granular Video Computing: with Rough Sets, Deep Learning and in IoT. World Scientific, Singapore5.Liu Y, Cheng M-M, Hu X, Wang K, Bai X (2017) Richer convolutional features for edge detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3000–30096.Pal S K, King R A (1983) On edge detection of x-ray images using fuzzy sets. IEEE Trans Pattern Anal Mach Intell 5(1):69–77 7.Deravi F, Pal S K (1983) Grey level thresholding using second-order statistics. Pattern Recogn Lett 1(5-6):417–422 8.Pal S K, King R A, Hashim AA (1983) Automatic grey level thresholding through index of fuzziness and entropy. Pattern Recogn Lett 1(3):141–146 9.Cao Z, Simon T, Wei S-E, Sheikh Y (2017) Realtime multi-person 2d pose estimation using part affinity fields. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7291–729910.Masi I, Wu Y, Hassner T, Natarajan P (2018) Deep face recognition: A survey. In: 2018 31st SIBGRAPI conference on graphics, patterns and images (SIBGRAPI). IEEE, pp 471–47811.Hasan M, Orgun M A, Schwitter R (2018) A survey on real-time event detection from the twitter data stream. J Inf Sci 44(4):443–463 12.Brunetti A, Buongiorno D, Trotta G F, Bevilacqua V (2018) Computer vision and deep learning techniques for pedestrian detection and tracking: A survey. Neurocomputing 300:17–33 13.Ren X, Zhou Y, He J, Chen K, Yang X, Sun J (2016) A convolutional neural network-based chinese text detection algorithm via text structure modeling. IEEE Trans Multimed 19(3):506–518 14.Fan D-P, Wang W, Cheng M-M, Shen J (2019) Shifting more attention to video salient object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 8554–856415.Pal N R, Pal S K (1993) A review on image segmentation techniques. Pattern Recogn 26 (9):1277–1294 16.Dollar P, Wojek C, Schiele B, Perona P (2011) Pedestrian detection: An evaluation of the state of the art. IEEE Trans Pattern Anal Mach Intell 34(4):743–761 17.Geiger A, Lenz P, Urtasun R (2012) Are we ready for autonomous driving? the kitti vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, pp 3354–3361
Информация по комментариям в разработке