Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Transforming Rows into Columns in Pandas

  • vlogize
  • 2025-10-11
  • 0
Transforming Rows into Columns in Pandas
Creating a set of columns from rows using pandaspythonpandas
  • ok logo

Скачать Transforming Rows into Columns in Pandas бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Transforming Rows into Columns in Pandas или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Transforming Rows into Columns in Pandas бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Transforming Rows into Columns in Pandas

Learn how to convert rows into columns using pandas DataFrame in Python, aiming for data transformation for better analysis and readability.
---
This video is based on the question https://stackoverflow.com/q/68665507/ asked by the user 'James' ( https://stackoverflow.com/u/16518752/ ) and on the answer https://stackoverflow.com/a/68665860/ provided by the user 'sophocles' ( https://stackoverflow.com/u/9167382/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Creating a set of columns from rows using pandas

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Transforming Rows into Columns in Pandas: A Step-by-Step Guide

In data analysis, it's often necessary to format your data in a way that makes it easier to interpret. One common challenge that data analysts face is transforming rows into columns within a pandas DataFrame. This transformation is especially useful when dealing with datasets that include multiple categories of data captured as rows, which you may want to represent in a more structured format.

To illustrate this, let's explore a scenario where you have a DataFrame containing GDP data across different countries, subject descriptors, and years. The goal is to reshape this data so that the subject descriptors become distinct columns while maintaining the year and country identifiers.

The Initial DataFrame

Here’s what your initial DataFrame might look like:

[[See Video to Reveal this Text or Code Snippet]]

Desired Output

We want to transform this DataFrame into the following format:

[[See Video to Reveal this Text or Code Snippet]]

Steps to Achieve the Transformation

To convert the rows into columns in Pandas, you can follow these detailed steps:

1. Grouping the Data

First, you will group the data by Year and Country and aggregate the GDP values into a list. This can be accomplished with the following code:

[[See Video to Reveal this Text or Code Snippet]]

2. Creating New Columns

Next, you need to transform this aggregated list into a new DataFrame. This involves taking the unique subject descriptors and using them to create new columns prefixed with GDP_. Here's the relevant code:

[[See Video to Reveal this Text or Code Snippet]]

3. Combining the DataFrames

Finally, you can combine your grouped DataFrame and the new columns DataFrame using pd.concat(), and drop the original GDP column since it will no longer be needed:

[[See Video to Reveal this Text or Code Snippet]]

Summary of the Final Output

After running the above code, you will achieve the structured DataFrame that represents the desired format:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Transforming rows into columns in pandas can enhance both the readability and usability of your data. By leveraging grouping and aggregation functions, you can easily reshape your DataFrame to suit your analytical needs. This technique is essential for anyone looking to conduct thorough data analysis or prepare data for machine learning models.

Now you have a clear understanding and step-by-step guide on how to effectively perform this transformation. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]