Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть A systematic comparison of computational methods for expression forecasting | Eric Kernfeld

  • Valence Labs
  • 2025-08-25
  • 410
A systematic comparison of computational methods for expression forecasting | Eric Kernfeld
  • ok logo

Скачать A systematic comparison of computational methods for expression forecasting | Eric Kernfeld бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно A systematic comparison of computational methods for expression forecasting | Eric Kernfeld или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку A systematic comparison of computational methods for expression forecasting | Eric Kernfeld бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео A systematic comparison of computational methods for expression forecasting | Eric Kernfeld

Portal is the home of the AI for drug discovery community. Join for more details on this talk and to connect with the speakers: https://portal.valencelabs.com/multio...

Paper: A systematic comparison of computational methods for expression forecasting

https://www.biorxiv.org/content/10.11...

Abstract: Expression forecasting methods use machine learning models to predict how a cell will alter its transcriptome upon perturbation. Such methods are enticing because they promise to answer pressing questions in fields ranging from developmental genetics to cell fate engineering and because they are a fast, cheap, and accessible complement to the corresponding experiments. However, the absolute and relative accuracy of these methods is poorly characterized, limiting their informed use, their improvement, and the interpretation of their predictions. To address these issues, we created a benchmarking platform that combines a panel of 11 large-scale perturbation datasets with an expression forecasting software engine that encompasses or interfaces to a wide variety of methods. We used our platform to systematically assess methods, parameters, and sources of auxiliary data, finding that performance strongly depends on the choice of metric, and especially for simple metrics like mean squared error, it is uncommon for expression forecasting methods to out-perform simple baselines. Our platform will serve as a resource to improve methods and to identify contexts in which expression forecasting can succeed.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]