Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть SIH1725 || Utilization of images for monitoring progress of construction activities

  • Innov8Infinity
  • 2024-09-15
  • 317
SIH1725 || Utilization of images for monitoring progress of construction activities
  • ok logo

Скачать SIH1725 || Utilization of images for monitoring progress of construction activities бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно SIH1725 || Utilization of images for monitoring progress of construction activities или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку SIH1725 || Utilization of images for monitoring progress of construction activities бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео SIH1725 || Utilization of images for monitoring progress of construction activities

Background: The monitoring of physical progress of construction activities requires a technical expert to visit and observe the site. Due to large number of projects in Indian cities, field visits by technical experts for weekly/daily monitoring becomes non-feasible. A machine learning based solution, which can identify the status of construction activities based on images, can allow the ULBs, state agencies, and central agencies to monitor physical progress daily, or even in real time. Description: The problem requires a machine learning based software solution in which images from sites of ongoing building construction projects can be processed, to identify the stage of construction. As the construction activities include multiple components, stages in construction, and interior works; the software can take inputs regarding (number of building in image, type of progress in construction activities to be assessed (foundation, super-structure, facade, interiors, etc.)), to identify the type of algorithms to be used to analyze the images. For different components of construction activities, different machine learning algorithms will need to be developed with training using images from construction site. If the selected category of construction activity and uploaded images have different activities/ components, the software should raise an error and ask for selection of appropriate category. While similar monitoring solutions are required for all types of projects, the current problem statement only includes "building construction projects" to keep scope of problem statement limited and assess the feasibility of similar solutions in future. Expected Solution: A software solution utilizing machine learning algorithm to identify stage of construction/progress of construction activities from uploaded site images. Which should be able to: A. Allow users to upload images and provide information regarding type of activity to be assessed (foundation, super structure, furnishing, interiors, etc.) B. Analyze the images and describe the construction activity and stage of construction. C. Compare status of construction with previous site images and provide data regarding progress of work. D. Raise error in case of incorrect image/details have been uploaded and ask the user for necessary corrections.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]