Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Alexandr Notchenko - Analyzing 3D objects with power of Deep Learning and Cython

  • PyData
  • 2017-05-15
  • 1809
Alexandr Notchenko - Analyzing 3D objects with power of Deep Learning and Cython
  • ok logo

Скачать Alexandr Notchenko - Analyzing 3D objects with power of Deep Learning and Cython бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Alexandr Notchenko - Analyzing 3D objects with power of Deep Learning and Cython или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Alexandr Notchenko - Analyzing 3D objects with power of Deep Learning and Cython бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Alexandr Notchenko - Analyzing 3D objects with power of Deep Learning and Cython

Filmed at PyData London 2017
www.pydata.org

Description
Deep Learning taken world by storm in recent years, and most of the time it's powered by Python language. Working with 3D data is computationally demanding even by most powerful GPUs. A lot of times 3D data is in sparse form, or can be turned without loosing too much of it's usefulness. We combined high performance of CUDA library with ease of use and power of Python by getting good with Cython.

Abstract
We live in great time for development of Machine Learning algorithms. There is an abundance of ways to implement models, a lot of them are in Python or have a python API. Python is a great way to implement high level APIs and connect your code to other parts of data processing. Learning how to write in Theano or Tensorflow can be very helpful for most of the people facing problems with complex data. But for a niche area like Deep Learning for sparse 3D data there was no solutions. Our python module enables creation of deep neural networks to process sparse data quickly using combination of Python and fast C++/CUDA code underneath. In my talk I'll explain how to connect high performance code with practical user level abstractions using Cython, as it was done in our project.

You can see code in a github repository or checkout our paper.
https://github.com/gangiman/PySparseC...
https://arxiv.org/abs/1611.09159

PyData is an educational program of NumFOCUS, a 501(c)3 non-profit organization in the United States. PyData provides a forum for the international community of users and developers of data analysis tools to share ideas and learn from each other. The global PyData network promotes discussion of best practices, new approaches, and emerging technologies for data management, processing, analytics, and visualization. PyData communities approach data science using many languages, including (but not limited to) Python, Julia, and R.

We aim to be an accessible, community-driven conference, with novice to advanced level presentations. PyData tutorials and talks bring attendees the latest project features along with cutting-edge use cases. 00:00 Welcome!
00:10 Help us add time stamps or captions to this video! See the description for details.

Want to help add timestamps to our YouTube videos to help with discoverability? Find out more here: https://github.com/numfocus/YouTubeVi...

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]