Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Use if else Conditions in Pandas with Multiple Columns

  • vlogize
  • 2025-03-24
  • 3
How to Use if else Conditions in Pandas with Multiple Columns
if else condition in pandas with multiple column as argumentspythonpandasdataframe
  • ok logo

Скачать How to Use if else Conditions in Pandas with Multiple Columns бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Use if else Conditions in Pandas with Multiple Columns или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Use if else Conditions in Pandas with Multiple Columns бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Use if else Conditions in Pandas with Multiple Columns

Discover how to effectively utilize `if else` conditions in Pandas DataFrames using multiple columns as arguments to create new columns easily.
---
This video is based on the question https://stackoverflow.com/q/74591165/ asked by the user 'Tony' ( https://stackoverflow.com/u/14923964/ ) and on the answer https://stackoverflow.com/a/74591412/ provided by the user 'Pierre-Loic' ( https://stackoverflow.com/u/13970089/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: if else condition in pandas with multiple column as arguments

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Use if else Conditions in Pandas with Multiple Columns

Pandas is an incredibly powerful tool for data manipulation and analysis in Python. One common task you may encounter when working with DataFrames is the need to create new columns based on the conditions of existing ones. Specifically, the if else condition can be especially useful when you want to derive values from multiple columns. In this guide, we will dive into how to implement if else conditions in Pandas using multiple columns as arguments.

The Challenge

Let's start with a simple example. Suppose you have a DataFrame like this:

[[See Video to Reveal this Text or Code Snippet]]

In this case, we want to create a new column called out. The value in this new column should match the qty column if the code is 'sp'. Otherwise, it should be set to 0. Your expected output after performing this operation should look like this:

[[See Video to Reveal this Text or Code Snippet]]

The Solution

To achieve this, you need to use the apply() method in combination with a lambda function to set the conditional logic. Importantly, you must include the axis=1 parameter to apply the function across columns for each row.

Step-by-Step Implementation

Using the apply() Method: The apply() function allows you to apply a function along an axis of the DataFrame. Setting axis=1 means you are applying the function row-wise.

Defining the Lambda Function: The lambda function will check the value of the code column and return the corresponding qty or 0.

Creating the New Column: Store the result of the operation in the new column out.

Here’s how you do it:

[[See Video to Reveal this Text or Code Snippet]]

Explanation of the Code

lambda x: This is a small anonymous function we define. x represents each row of the DataFrame.

x['qty'] if x['code'] == 'sp': This checks if the code is 'sp', and if true, returns the value from the qty column.

else 0: If the condition is not met, it returns 0.

axis=1: This parameter ensures that the function operates over the rows rather than the columns.

Final Result

After executing the code snippet above, your DataFrame will be updated as expected, with the new out column accurately reflecting the conditional values:

[[See Video to Reveal this Text or Code Snippet]]

This will output:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Utilizing if else conditions in Pandas with multiple columns is straightforward once you understand how the apply() function works. This method allows for easily extending your DataFrame with new columns based on existing data, making your data analysis tasks much more convenient.

Feel free to experiment with different conditions or apply this logic to more complex scenarios in your DataFrames. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]