Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Machine learning-assisted analysis of XANES and EXAFS: XAS Journal Club, Anatoly Frenkel

  • Global XAS Journal Club
  • 2020-06-18
  • 2408
Machine learning-assisted analysis of XANES and EXAFS: XAS Journal Club, Anatoly Frenkel
x-ray absorption fine structurexafsextended x-ray absorption fine structureexafsmachine learningneural networkcatalystPt based catalyst
  • ok logo

Скачать Machine learning-assisted analysis of XANES and EXAFS: XAS Journal Club, Anatoly Frenkel бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Machine learning-assisted analysis of XANES and EXAFS: XAS Journal Club, Anatoly Frenkel или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Machine learning-assisted analysis of XANES and EXAFS: XAS Journal Club, Anatoly Frenkel бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Machine learning-assisted analysis of XANES and EXAFS: XAS Journal Club, Anatoly Frenkel

Title: Machine learning-assisted analysis of material structure using XANES and EXAFS
Speaker: Prof. Anatoly Frenkel (Stony Brook University)
Abstract: Tracking the structure of functional nanomaterials (e.g., metal catalysts) remains a challenge due to the paucity of experimental techniques that can provide atomic-level information for metal species in harsh conditions, often required for studying chemical transformations. Here we report on the use of X-ray absorption spectroscopy (XANES and EXAFS) and supervised machine learning (SML) for determining the three-dimensional geometry of monometallic and alloy nanoparticles [1]. Artificial neural network (NN) is used to unravel the hidden relationship between the XANES features and material’s geometry [2]. In the case of EXAFS, NN is used to obtained the partial radial distribution function (PRDF) directly from the spectra [3]. In other words, we trained computer to learn how to ‘invert” the unknown spectrum and obtain the underlying structural descriptors. Training of the NN was performed by using theoretical spectroscopy codes. These applications are demonstrated by reconstructing the compositional distributions of nanocatalysts from the coordination numbers obtained by NN-XANES, or from the PRDF obtained by NN-EXAFS. First applications of these method to the determination of structure of nanocatalysts in reaction conditions will be demonstrated [4-6].
Reading: [1] J. Timoshenko, A. I. Frenkel. “Inverting” X-ray Absorption Spectra of Catalysts by Machine Learning in Search of Activity Descriptors. ACS Catalysis (Perspective) 9, 10192-10211 (2019).
https://pubs.acs.org/doi/10.1021/acsc...
[2] J. Timoshenko, D. Lu, Y. Lin, A. I. Frenkel. Supervised machine learning-based determination of three-dimensional structure of metallic nanoparticles. J. Phys. Chem. Lett., 8, 5091-5098 (2017).
https://pubs.acs.org/doi/abs/10.1021/...
[3] J. Timoshenko, et al. Artificial neural network approach for characterizing structural transformations by X-ray Absorption Fine Structure spectroscopy. Phys. Rev. Lett. 120, 225502 (2018).
https://journals.aps.org/prl/abstract...
[4] N. Marcella, Y. Liu,et al Neural network assisted analysis of bimetallic nanocatalysts using X-ray absorption near edge structure spectroscopy. Phys. Chem. Chem. Phys. (2020) Early view.
https://pubs.rsc.org/en/content/artic...
[5] J. Timoshenko, et al . Probing atomic distributions in mono- and bimetallic nanoparticles by supervised machine learning. Nano Letters 19, 520-529 (2019).
https://pubs.acs.org/doi/10.1021/acs....
[6] Y. Liu,et al . Mapping XANES spectra on structural descriptors of copper oxide clusters using supervised machine learning. J. Chem. Phys. 151, 164201 (2019).
https://aip.scitation.org/doi/full/10...

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]