Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть repeated k fold cross validation python machine learning

  • CodeBeam
  • 2025-01-30
  • 21
repeated k fold cross validation python machine learning
Pythonmachine learningmodel evaluationhyperparameter tuningsklearncross-validation techniquesstratified k-foldmodel robustnessperformance metricsdata splittingoverfitting preventionvalidation techniquesmodel selectionreproducible results
  • ok logo

Скачать repeated k fold cross validation python machine learning бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно repeated k fold cross validation python machine learning или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку repeated k fold cross validation python machine learning бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео repeated k fold cross validation python machine learning

Download 1M+ code from https://codegive.com/23fddd4
certainly! repeated k-fold cross-validation is a powerful technique in machine learning to assess the performance of a model. it mitigates the variability associated with a single k-fold cross-validation by repeating the process multiple times with different random splits of the data.

overview of repeated k-fold cross-validation

1. **k-fold cross-validation**: the dataset is divided into `k` subsets (or folds). for each iteration, one fold is used as the test set, and the remaining `k-1` folds are used for training. this process is repeated `k` times, with each fold serving as the test set once.

2. **repeating the process**: by repeating the k-fold process multiple times (often referred to as `n_repeats`), you get a better estimate of the model's performance. each repetition will have different training and test splits.

benefits
reduces variance in the performance estimate.
more robust evaluation of the model's performance.

code example

let's go through a code example using the `scikit-learn` library in python. we will use a synthetic dataset for demonstration.

step 1: install required libraries

if you haven't installed `scikit-learn`, you can do it using pip:



step 2: import libraries



step 3: create a synthetic dataset



step 4: set up repeated k-fold cross-validation



step 5: evaluate the model



step 6: visualizing the results (optional)



explanation of the code

**synthetic dataset**: we create a synthetic dataset with 1000 samples and 20 features using `make_classification`.
**model**: we define a random forest classifier as our model.
**repeatedkfold**: we create a `repeatedkfold` object that specifies the number of folds and repeats.
**cross validation**: we evaluate the model using `cross_val_score`, which returns an array of accuracy scores.
**results**: finally, we compute and print the mean accuracy and standard deviation.
**visualization**: a boxplot is created to visualize the distribution of cross-validation ...

#MachineLearning #KFoldCrossValidation #PythonProgramming

repeated k-fold cross-validation
Python
machine learning
model evaluation
hyperparameter tuning
sklearn
cross-validation techniques
stratified k-fold
model robustness
performance metrics
data splitting
overfitting prevention
validation techniques
model selection
reproducible results

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]