Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть KeypointNet: A Large-Scale 3D Keypoint Dataset Aggregated From Numerous Human Annotations

  • ComputerVisionFoundation Videos
  • 2020-07-18
  • 417
KeypointNet: A Large-Scale 3D Keypoint Dataset Aggregated From Numerous Human Annotations
  • ok logo

Скачать KeypointNet: A Large-Scale 3D Keypoint Dataset Aggregated From Numerous Human Annotations бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно KeypointNet: A Large-Scale 3D Keypoint Dataset Aggregated From Numerous Human Annotations или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку KeypointNet: A Large-Scale 3D Keypoint Dataset Aggregated From Numerous Human Annotations бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео KeypointNet: A Large-Scale 3D Keypoint Dataset Aggregated From Numerous Human Annotations

Authors: Yang You, Yujing Lou, Chengkun Li, Zhoujun Cheng, Liangwei Li, Lizhuang Ma, Cewu Lu, Weiming Wang Description: Detecting 3D objects keypoints is ofgreat interest to the areas of both graphics and computer vision. There have been several 2D and 3D keypoint datasets aiming to address this problem in a data-driven way. These datasets, however, either lack scalability or bring ambiguity to the definition of keypoints. Therefore, we present KeypointNet: the first large-scale and diverse 3D keypoint dataset that contains 83,231 keypoints and 8,329 3D models from 16 object categories, by leveraging numerous human annotations. To handle the inconsistency between annotations from different people, we propose a novel method to aggregate these keypoints automatically, through minimization of a fidelity loss. Finally, ten state-of-the-art methods are benchmarked on our proposed dataset.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]